These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 35436105)

  • 1. From Spent Lithium-Ion Batteries to Low-Cost Li
    Tong Y; Qin C; Zhu L; Chen S; Lv Z; Ran J
    Environ Sci Technol; 2022 May; 56(9):5734-5742. PubMed ID: 35436105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidating the promotion of Na
    Wang Z; Xu Q; Peng K; Wang Z; Zou X; Cheng H; Lu X
    Phys Chem Chem Phys; 2021 Dec; 23(47):26696-26708. PubMed ID: 34842864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of high-temperature CO
    Zhao D; Geng L; Jia Y; Wei J; Zhou X; Liao L
    Environ Sci Pollut Res Int; 2024 Mar; 31(14):21267-21278. PubMed ID: 38386157
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A theoretical study on CO
    Gutiérrez A; Tamayo-Ramos JA; Martel S; Barros R; Bol A; Gennari FC; Larochette PA; Atilhan M; Aparicio S
    Phys Chem Chem Phys; 2022 Jun; 24(22):13678-13689. PubMed ID: 35611946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Foreseeable Future of Spent Lithium-Ion Batteries: Advanced Upcycling for Toxic Electrolyte, Cathode, and Anode from Environmental and Technological Perspectives.
    Zhang L; Zhang Y; Xu Z; Zhu P
    Environ Sci Technol; 2023 Sep; 57(36):13270-13291. PubMed ID: 37610371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of stable tetraethylenepentamine-modified ordered mesoporous silica sorbents by recycling natural Equisetum ramosissimum.
    Liu SH; Kuok CH
    Chemosphere; 2018 Jan; 191():566-572. PubMed ID: 29073565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lithium silicate nanosheets with excellent capture capacity and kinetics with unprecedented stability for high-temperature CO
    Belgamwar R; Maity A; Das T; Chakraborty S; Vinod CP; Polshettiwar V
    Chem Sci; 2021 Feb; 12(13):4825-4835. PubMed ID: 34168759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphite Recycling from Spent Lithium-Ion Batteries.
    Rothermel S; Evertz M; Kasnatscheew J; Qi X; Grützke M; Winter M; Nowak S
    ChemSusChem; 2016 Dec; 9(24):3473-3484. PubMed ID: 27860314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the formation and carbon dioxide capture by Li
    Grasso ML; Blanco MV; Cova F; González JA; Arneodo Larochette P; Gennari FC
    Phys Chem Chem Phys; 2018 Nov; 20(41):26570-26579. PubMed ID: 30306971
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Recycling of Spent Lithium-Ion Batteries: Crucial Flotation for the Separation of Cathode and Anode Materials.
    Ma X; Ge P; Wang L; Sun W; Bu Y; Sun M; Yang Y
    Molecules; 2023 May; 28(10):. PubMed ID: 37241821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient purification and high-quality regeneration of graphite from spent lithium-ion batteries by surfactant-assisted methanesulfonic acid.
    Liu G; Ma L; Xi X; Nie Z
    Waste Manag; 2024 Apr; 178():105-114. PubMed ID: 38387254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-temperature CO
    Messabih K; Bendjaballah-Lalaoui N; Boucheffa Y
    Environ Sci Pollut Res Int; 2024 May; 31(22):32003-32015. PubMed ID: 38642231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Review on Regenerating Materials from Spent Lithium-Ion Batteries.
    Xu R; Xu W; Wang J; Liu F; Sun W; Yang Y
    Molecules; 2022 Mar; 27(7):. PubMed ID: 35408680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Developments of Tin (II) Sulfide/Carbon Composites for Achieving High-Performance Lithium Ion Batteries: A Critical Review.
    Mahmud ST; Mia R; Mahmud S; Sha S; Zhang R; Deng Z; Yanilmaz M; Luo L; Zhu J
    Nanomaterials (Basel); 2022 Apr; 12(8):. PubMed ID: 35457954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microsized Porous SiO
    Cui J; Cui Y; Li S; Sun H; Wen Z; Sun J
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30239-30247. PubMed ID: 27762546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unique Hierarchically Structured High-Entropy Alloys with Multiple Adsorption Sites for Rechargeable Li-CO
    Yi J; Deng Q; Cheng H; Zhu D; Zhang K; Yang Y
    Small; 2024 Apr; ():e2401146. PubMed ID: 38618939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery methods and regulation status of waste lithium-ion batteries in China: A mini review.
    Siqi Z; Guangming L; Wenzhi H; Juwen H; Haochen Z
    Waste Manag Res; 2019 Nov; 37(11):1142-1152. PubMed ID: 31244410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast Carbon Dioxide Sorption Kinetics Using Lithium Silicate Nanowires.
    Nambo A; He J; Nguyen TQ; Atla V; Druffel T; Sunkara M
    Nano Lett; 2017 Jun; 17(6):3327-3333. PubMed ID: 28534635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eco-Friendly Recycling of Lithium Batteries for Extraction of High-Purity Metals.
    Mahran GMA; Gado MA; Fathy WM; ElDeeb AB
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.