BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 35436405)

  • 1. Nanoporous Titanium (Oxy)nitride Films as Broadband Solar Absorbers.
    Bricchi BR; Mascaretti L; Garattoni S; Mazza M; Ghidelli M; Naldoni A; Li Bassi A
    ACS Appl Mater Interfaces; 2022 Apr; 14(16):18453-18463. PubMed ID: 35436405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoporous Titanium Oxynitride Nanotube Metamaterials with Deep Subwavelength Heat Dissipation for Perfect Solar Absorption.
    Afshar M; Schirato A; Mascaretti L; Hejazi SMH; Shahrezaei M; Della Valle G; Fornasiero P; Kment Š; Alabastri A; Naldoni A
    ACS Photonics; 2023 Sep; 10(9):3291-3301. PubMed ID: 37743938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion.
    Wu D; Liu C; Liu Y; Xu Z; Yu Z; Yu L; Chen L; Ma R; Zhang J; Ye H
    RSC Adv; 2018 Jun; 8(38):21054-21064. PubMed ID: 35539953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable wavelength-selective solar absorber based on refractory TiN nanostructures.
    Nishikawa K; Yatsugi K
    Nanotechnology; 2021 Apr; 32(15):155404. PubMed ID: 33254161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An elliptical nanoantenna array plasmonic metasurface for efficient solar energy harvesting.
    Ashrafi-Peyman Z; Jafargholi A; Moshfegh AZ
    Nanoscale; 2024 Feb; 16(7):3591-3605. PubMed ID: 38270171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titanium Oxynitride Spheres with Broad Plasmon Resonance for Solar Seawater Desalination.
    Cheng X; Bai X; Yang J; Zhu XM; Wang J
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28769-28780. PubMed ID: 35704447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solar Thermoplasmonic Nanofurnace for High-Temperature Heterogeneous Catalysis.
    Naldoni A; Kudyshev ZA; Mascaretti L; Sarmah SP; Rej S; Froning JP; Tomanec O; Yoo JE; Wang D; Kment Š; Montini T; Fornasiero P; Shalaev VM; Schmuki P; Boltasseva A; Zbořil R
    Nano Lett; 2020 May; 20(5):3663-3672. PubMed ID: 32320257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of inherited plasmonic properties of TiN in titanium oxynitride (TiO
    Ravikumar MP; Quach TA; Urupalli B; Murikinati MK; Muthukonda Venkatakrishnan S; Do TO; Mohan S
    Environ Res; 2023 Jul; 229():115961. PubMed ID: 37086885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-Broadband Refractory All-Metal Metamaterial Selective Absorber for Solar Thermal Energy Conversion.
    Qi B; Chen W; Niu T; Mei Z
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared.
    Lee D; Go M; Kim M; Jang J; Choi C; Kim JK; Rho J
    Microsyst Nanoeng; 2021; 7():14. PubMed ID: 34567729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation.
    Zhou L; Tan Y; Ji D; Zhu B; Zhang P; Xu J; Gan Q; Yu Z; Zhu J
    Sci Adv; 2016 Apr; 2(4):e1501227. PubMed ID: 27152335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titanium Oxynitride Thin Films with Tunable Double Epsilon-Near-Zero Behavior for Nanophotonic Applications.
    Braic L; Vasilantonakis N; Mihai A; Villar Garcia IJ; Fearn S; Zou B; Alford NM; Doiron B; Oulton RF; Maier SA; Zayats AV; Petrov PK
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29857-29862. PubMed ID: 28820932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Nanostructures for Broadband Solar Absorption Based on Synergistic Effect of Multiple Absorption Mechanisms.
    Su J; Liu D; Sun L; Chen G; Ma C; Zhang Q; Li X
    Nanomaterials (Basel); 2022 Dec; 12(24):. PubMed ID: 36558309
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-broadband metamaterial absorber based on cross-shaped TiN resonators.
    Mehrabi S; Rezaei MH; Zarifkar A
    J Opt Soc Am A Opt Image Sci Vis; 2020 Apr; 37(4):697-704. PubMed ID: 32400557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution-Processed All-Ceramic Plasmonic Metamaterials for Efficient Solar-Thermal Conversion over 100-727 °C.
    Li Y; Lin C; Wu Z; Chen Z; Chi C; Cao F; Mei D; Yan H; Tso CY; Chao CYH; Huang B
    Adv Mater; 2021 Jan; 33(1):e2005074. PubMed ID: 33241608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion.
    Lin KT; Lin H; Yang T; Jia B
    Nat Commun; 2020 Mar; 11(1):1389. PubMed ID: 32170054
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic Titanium Nitride Nano-enabled Membranes with High Structural Stability for Efficient Photothermal Desalination.
    Farid MU; Kharraz JA; An AK
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3805-3815. PubMed ID: 33444505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refractory plasmonics with titanium nitride: broadband metamaterial absorber.
    Li W; Guler U; Kinsey N; Naik GV; Boltasseva A; Guan J; Shalaev VM; Kildishev AV
    Adv Mater; 2014 Dec; 26(47):7959-65. PubMed ID: 25327161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultra-Broadband High-Efficiency Solar Absorber Based on Double-Size Cross-Shaped Refractory Metals.
    Li H; Niu J; Zhang C; Niu G; Ye X; Xie C
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32204359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband thin-film and metamaterial absorbers using refractory vanadium nitride and their thermal stability.
    Wang W; Wang H; Yu P; Sun K; Tong X; Lin F; Wu C; You Y; Xie W; Li Y; Yuan C; Govorov AO; Muskens OL; Xu H; Sun S; Wang Z
    Opt Express; 2021 Oct; 29(21):33456-33466. PubMed ID: 34809157
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.