These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 35436602)

  • 1. Human bone marrow-derived mesenchymal stem cells rescue neonatal CPAP-induced airway hyperreactivity.
    MacFarlane PM; Mayer CA; Caplan AI; Raffay TM; Mayer AJ; Bonfield TL
    Respir Physiol Neurobiol; 2022 Aug; 302():103913. PubMed ID: 35436602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Early versus delayed continuous positive airway pressure (CPAP) for respiratory distress in preterm infants.
    Ho JJ; Subramaniam P; Sivakaanthan A; Davis PG
    Cochrane Database Syst Rev; 2020 Oct; 10(10):CD002975. PubMed ID: 33058139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bi-level Nasal Positive Airway Pressure (BiPAP) versus Nasal Continuous Positive Airway Pressure (CPAP) for Preterm Infants with Birth Weight Less Than 1500 g and Respiratory Distress Syndrome Following INSURE Treatment: A Two-center Randomized Controlled Trial.
    Pan R; Chen GY; Wang J; Zhou ZX; Zhang PY; Chang LW; Rong ZH
    Curr Med Sci; 2021 Jun; 41(3):542-547. PubMed ID: 34129204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nasal continuous positive airway pressure levels for the prevention of morbidity and mortality in preterm infants.
    Bamat N; Fierro J; Mukerji A; Wright CJ; Millar D; Kirpalani H
    Cochrane Database Syst Rev; 2021 Nov; 11(11):CD012778. PubMed ID: 34847243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CPAP-induced airway hyper-reactivity in mice is modulated by hyaluronan synthase-3.
    Mayer CA; Ganguly A; Mayer A; Pabelick CM; Prakash YS; Hascall VC; Midura RJ; Cali V; Flask CA; Erokwu BO; Martin RJ; MacFarlane PM
    Pediatr Res; 2022 Sep; 92(3):685-693. PubMed ID: 34750521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CPAP protects against hyperoxia-induced increase in airway reactivity in neonatal mice.
    MacFarlane PM; Mayer CA; Jafri A; Pabelick CM; Prakash YS; Martin RJ
    Pediatr Res; 2021 Jul; 90(1):52-57. PubMed ID: 33122799
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Continuous positive airway pressure failure in preterm infants: incidence, predictors and consequences.
    Dargaville PA; Aiyappan A; De Paoli AG; Dalton RG; Kuschel CA; Kamlin CO; Orsini F; Carlin JB; Davis PG
    Neonatology; 2013; 104(1):8-14. PubMed ID: 23595061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant instillation in spontaneously breathing preterm infants: a systematic review and meta-analysis.
    Rigo V; Lefebvre C; Broux I
    Eur J Pediatr; 2016 Dec; 175(12):1933-1942. PubMed ID: 27678511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-invasive high-frequency ventilation versus bi-phasic continuous positive airway pressure (BP-CPAP) following CPAP failure in infants <1250 g: a pilot randomized controlled trial.
    Mukerji A; Sarmiento K; Lee B; Hassall K; Shah V
    J Perinatol; 2017 Jan; 37(1):49-53. PubMed ID: 27684415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nasal bi-level positive airway pressure (BiPAP) versus nasal continuous positive airway pressure (CPAP) in preterm infants ≤32 weeks: A retrospective cohort study.
    Rong ZH; Li WB; Liu W; Cai BH; Wang J; Yang M; Li W; Chang LW
    J Paediatr Child Health; 2016 May; 52(5):493-8. PubMed ID: 27329903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium-sensing receptor and CPAP-induced neonatal airway hyperreactivity in mice.
    Mayer CA; Roos B; Teske J; Wells N; Martin RJ; Chang W; Pabelick CM; Prakash YS; MacFarlane PM
    Pediatr Res; 2022 May; 91(6):1391-1398. PubMed ID: 33958714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Minimally Invasive Surfactant Therapy vs Sham Treatment on Death or Bronchopulmonary Dysplasia in Preterm Infants With Respiratory Distress Syndrome: The OPTIMIST-A Randomized Clinical Trial.
    Dargaville PA; Kamlin COF; Orsini F; Wang X; De Paoli AG; Kanmaz Kutman HG; Cetinkaya M; Kornhauser-Cerar L; Derrick M; Özkan H; Hulzebos CV; Schmölzer GM; Aiyappan A; Lemyre B; Kuo S; Rajadurai VS; O'Shea J; Biniwale M; Ramanathan R; Kushnir A; Bader D; Thomas MR; Chakraborty M; Buksh MJ; Bhatia R; Sullivan CL; Shinwell ES; Dyson A; Barker DP; Kugelman A; Donovan TJ; Tauscher MK; Murthy V; Ali SKM; Yossuck P; Clark HW; Soll RF; Carlin JB; Davis PG;
    JAMA; 2021 Dec; 326(24):2478-2487. PubMed ID: 34902013
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Failure of non-invasive continuous positive airway pressure as the initial respiratory support in very preterm infants: a multicenter prospective cohort study].
    Multicenter Study Collaborative Group for Evaluation of Outcomes in Very Low Birth Weight Infants
    Zhonghua Er Ke Za Zhi; 2021 Apr; 59(4):273-279. PubMed ID: 33775045
    [No Abstract]   [Full Text] [Related]  

  • 14. Preventing Continuous Positive Airway Pressure Failure: Evidence-Based and Physiologically Sound Practices from Delivery Room to the Neonatal Intensive Care Unit.
    Wright CJ; Sherlock LG; Sahni R; Polin RA
    Clin Perinatol; 2018 Jun; 45(2):257-271. PubMed ID: 29747887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noninvasive Support: Does It Really Decrease Bronchopulmonary Dysplasia?
    Wright CJ; Polin RA
    Clin Perinatol; 2016 Dec; 43(4):783-798. PubMed ID: 27837759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CPAP review.
    Chowdhury O; Wedderburn CJ; Duffy D; Greenough A
    Eur J Pediatr; 2012 Oct; 171(10):1441-8. PubMed ID: 22173399
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Effects of Bone Marrow-derived Versus Umbilical Cord Tissue Mesenchymal Stem Cells in an Experimental Model of Bronchopulmonary Dysplasia.
    Benny M; Courchia B; Shrager S; Sharma M; Chen P; Duara J; Valasaki K; Bellio MA; Damianos A; Huang J; Zambrano R; Schmidt A; Wu S; Velazquez OC; Hare JM; Khan A; Young KC
    Stem Cells Transl Med; 2022 Mar; 11(2):189-199. PubMed ID: 35298658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compared to CPAP extubation to non-invasive ventilation is associated with higher risk of bronchopulmonary dysplasia in extremely low birth weight infants.
    Abu-Shaweesh JM; Khasawneh W; Tang AS; Worley S; Saker F
    J Neonatal Perinatal Med; 2020; 13(2):183-188. PubMed ID: 31658069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A randomized controlled trial of post-extubation bubble continuous positive airway pressure versus Infant Flow Driver continuous positive airway pressure in preterm infants with respiratory distress syndrome.
    Gupta S; Sinha SK; Tin W; Donn SM
    J Pediatr; 2009 May; 154(5):645-50. PubMed ID: 19230906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous Positive Airway Pressure Strategies with Bubble Nasal Continuous Positive Airway Pressure: Not All Bubbling Is the Same: The Seattle Positive Airway Pressure System.
    Welty SE
    Clin Perinatol; 2016 Dec; 43(4):661-671. PubMed ID: 27837751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.