These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35436659)

  • 1. In-silico neuro musculoskeletal model reproduces the movement types obtained by spinal micro stimulation.
    Kapardi M; Pithapuram MV; Rangayyan YM; Iyengar RS; Singh AK; Sripada S; Raghavan M
    Comput Methods Programs Biomed; 2022 Jun; 220():106804. PubMed ID: 35436659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neural tracking and motor control approach to improve rehabilitation of upper limb movements.
    Goffredo M; Bernabucci I; Schmid M; Conforto S
    J Neuroeng Rehabil; 2008 Feb; 5():5. PubMed ID: 18251996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinating upper limbs for octave playing on the piano via neuro-musculoskeletal modeling.
    Wang H; Nonaka T; Abdulali A; Iida F
    Bioinspir Biomim; 2023 Oct; 18(6):. PubMed ID: 37714178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resonance tuning in a neuro-musculo-skeletal model of the forearm.
    Verdaasdonk BW; Koopman HF; Van der Helm FC
    Biol Cybern; 2007 Feb; 96(2):165-80. PubMed ID: 17077977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. nmsBuilder: Freeware to create subject-specific musculoskeletal models for OpenSim.
    Valente G; Crimi G; Vanella N; Schileo E; Taddei F
    Comput Methods Programs Biomed; 2017 Dec; 152():85-92. PubMed ID: 29054263
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimum trajectory learning in musculoskeletal systems with model predictive control and deep reinforcement learning.
    Denizdurduran B; Markram H; Gewaltig MO
    Biol Cybern; 2022 Dec; 116(5-6):711-726. PubMed ID: 35951117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A real-time, 3-D musculoskeletal model for dynamic simulation of arm movements.
    Chadwick EK; Blana D; van den Bogert AJ; Kirsch RF
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):941-8. PubMed ID: 19272926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Estimating Human Upper Limb Impedance Parameters From a State-of-the-Art Computational Neuromusculoskeletal Model.
    Asgari M; Crouch DL
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4820-4823. PubMed ID: 34892288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Curated Model Development Using NEUROiD: A Web-Based NEUROmotor Integration and Design Platform.
    Iyengar RS; Pithapuram MV; Singh AK; Raghavan M
    Front Neuroinform; 2019; 13():56. PubMed ID: 31440153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking of dynamic simulation predictions in two software platforms using an upper limb musculoskeletal model.
    Saul KR; Hu X; Goehler CM; Vidt ME; Daly M; Velisar A; Murray WM
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1445-58. PubMed ID: 24995410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of reaching movement with 6-DOF upper rehabilitation system 'Robotherapist'.
    Kikuchi T; Oda K; Isozumi S; Ohyama Y; Shichi N; Furusho J
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4262-5. PubMed ID: 19163654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myoelectric Control Based on a Generic Musculoskeletal Model: Toward a Multi-User Neural-Machine Interface.
    Pan L; Crouch DL; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1435-1442. PubMed ID: 29985153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatiotemporal Maps of Proprioceptive Inputs to the Cervical Spinal Cord During Three-Dimensional Reaching and Grasping.
    Kibleur P; Tata SR; Greiner N; Conti S; Barra B; Zhuang K; Kaeser M; Ijspeert A; Capogrosso M
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1668-1677. PubMed ID: 32396093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulations of neural mechanisms explaining upper and lower limb excitatory neural coupling.
    Huang HJ; Ferris DP
    J Neuroeng Rehabil; 2010 Dec; 7():59. PubMed ID: 21143960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual musculo-skeletal model for the biomechanical analysis of the upper limb.
    Pennestrì E; Stefanelli R; Valentini PP; Vita L
    J Biomech; 2007; 40(6):1350-61. PubMed ID: 16824531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recruitment of upper-limb motoneurons with epidural electrical stimulation of the cervical spinal cord.
    Greiner N; Barra B; Schiavone G; Lorach H; James N; Conti S; Kaeser M; Fallegger F; Borgognon S; Lacour S; Bloch J; Courtine G; Capogrosso M
    Nat Commun; 2021 Jan; 12(1):435. PubMed ID: 33469022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A two-muscle, continuum-mechanical forward simulation of the upper limb.
    Röhrle O; Sprenger M; Schmitt S
    Biomech Model Mechanobiol; 2017 Jun; 16(3):743-762. PubMed ID: 27837360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generating optimal control simulations of musculoskeletal movement using OpenSim and MATLAB.
    Lee LF; Umberger BR
    PeerJ; 2016; 4():e1638. PubMed ID: 26835184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.