These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 35436659)
21. Effects of the Computer Desk Level on the Musculoskeletal Discomfort of Neck and Upper Extremities and EMG Activities in Patients with Spinal Cord Injuries. Kang BR; Her JG; Lee JS; Ko TS; You YY Occup Ther Int; 2019; 2019():3026150. PubMed ID: 30863242 [TBL] [Abstract][Full Text] [Related]
22. Modeling the potentiality of spinal-like circuitry for stabilization of a planar arm system. Tsianos GA; Raphael G; Loeb GE Prog Brain Res; 2011; 194():203-13. PubMed ID: 21867805 [TBL] [Abstract][Full Text] [Related]
23. Synergistic control of forearm based on accelerometer data and artificial neural networks. Mijovic B; Popovic MB; Popovic DB Braz J Med Biol Res; 2008 May; 41(5):389-97. PubMed ID: 18516468 [TBL] [Abstract][Full Text] [Related]
24. Preliminary Validation of Upper Limb Musculoskeletal Model using Static Optimization. Lai Y; Sutjipto S; Carmichael MG; Paul G Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4509-4512. PubMed ID: 34892220 [TBL] [Abstract][Full Text] [Related]
25. Upper limb rehabilitation system based on virtual reality for breast cancer patients: Development and usability study. Zhou Z; Li J; Wang H; Luan Z; Li Y; Peng X PLoS One; 2021; 16(12):e0261220. PubMed ID: 34910786 [TBL] [Abstract][Full Text] [Related]
26. A platform for dynamic simulation and control of movement based on OpenSim and MATLAB. Mansouri M; Reinbolt JA J Biomech; 2012 May; 45(8):1517-21. PubMed ID: 22464351 [TBL] [Abstract][Full Text] [Related]
27. Comment: difference between assessment of upper limb movement and upper limb associated reactions during walking. Meyns P J Neuroeng Rehabil; 2021 Mar; 18(1):47. PubMed ID: 33691710 [TBL] [Abstract][Full Text] [Related]
28. Musculoskeletal model-based control interface mimics physiologic hand dynamics during path tracing task. Crouch DL; Huang HH J Neural Eng; 2017 Jun; 14(3):036008. PubMed ID: 28220759 [TBL] [Abstract][Full Text] [Related]
29. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients. Daly JJ; Ruff RL ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618 [TBL] [Abstract][Full Text] [Related]
30. OpenSim: a musculoskeletal modeling and simulation framework for Seth A; Sherman M; Reinbolt JA; Delp SL Procedia IUTAM; 2011; 2():212-232. PubMed ID: 25893160 [TBL] [Abstract][Full Text] [Related]
31. An optimized proportional-derivative controller for the human upper extremity with gravity. Jagodnik KM; Blana D; van den Bogert AJ; Kirsch RF J Biomech; 2015 Oct; 48(13):3692-700. PubMed ID: 26358531 [TBL] [Abstract][Full Text] [Related]
32. Scientific basis of the OCRA method for risk assessment of biomechanical overload of upper limb, as preferred method in ISO standards on biomechanical risk factors. Colombini D; Occhipinti E Scand J Work Environ Health; 2018 Jul; 44(4):436-438. PubMed ID: 29961081 [TBL] [Abstract][Full Text] [Related]
33. A review of methods for achieving upper limb movement following spinal cord injury through hybrid muscle stimulation and robotic assistance. Dunkelberger N; Schearer EM; O'Malley MK Exp Neurol; 2020 Jun; 328():113274. PubMed ID: 32145251 [TBL] [Abstract][Full Text] [Related]
34. Brain network involved in visual processing of movement stimuli used in upper limb robotic training: an fMRI study. Nocchi F; Gazzellini S; Grisolia C; Petrarca M; Cannatà V; Cappa P; D'Alessio T; Castelli E J Neuroeng Rehabil; 2012 Jul; 9():49. PubMed ID: 22828181 [TBL] [Abstract][Full Text] [Related]
35. The effects of upper limb posture and a sub-maximal gripping task on corticospinal excitability to muscles of the forearm. Forman DA; Baarbé J; Daligadu J; Murphy B; Holmes MW J Electromyogr Kinesiol; 2016 Apr; 27():95-101. PubMed ID: 26946146 [TBL] [Abstract][Full Text] [Related]
36. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology. Tsekleves E; Paraskevopoulos IT; Warland A; Kilbride C Disabil Rehabil Assist Technol; 2016; 11(5):413-22. PubMed ID: 25391221 [TBL] [Abstract][Full Text] [Related]
37. Posture-dependent control of stimulation in standing neuroprosthesis: simulation feasibility study. Audu ML; Gartman SJ; Nataraj R; Triolo RJ J Rehabil Res Dev; 2014; 51(3):481-96. PubMed ID: 25019669 [TBL] [Abstract][Full Text] [Related]
38. Human arm joints reconstruction algorithm in rehabilitation therapies assisted by end-effector robotic devices. Bertomeu-Motos A; Blanco A; Badesa FJ; Barios JA; Zollo L; Garcia-Aracil N J Neuroeng Rehabil; 2018 Feb; 15(1):10. PubMed ID: 29458397 [TBL] [Abstract][Full Text] [Related]
39. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait. Rajagopal A; Dembia CL; DeMers MS; Delp DD; Hicks JL; Delp SL IEEE Trans Biomed Eng; 2016 Oct; 63(10):2068-79. PubMed ID: 27392337 [TBL] [Abstract][Full Text] [Related]
40. Preclinical upper limb neurorobotic platform to assess, rehabilitate, and develop therapies. Pasquini M; James ND; Dewany I; Coen FV; Cho N; Lai S; Anil S; Carpaneto J; Barraud Q; Lacour SP; Micera S; Courtine G Sci Robot; 2022 Mar; 7(64):eabk2378. PubMed ID: 35353601 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]