These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 35436736)
1. Dual signal-based electrochemical aptasensor for simultaneous detection of Lead(II) and Mercury(II) in environmental water samples. Gao F; Zhan F; Li S; Antwi-Mensah P; Niu L; Wang Q Biosens Bioelectron; 2022 Aug; 209():114280. PubMed ID: 35436736 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous Hg Liu H; Wang S; He B; Xie L; Cao X; Wei M; Jin H; Ren W; Suo Z; Xu Y Anal Chim Acta; 2024 Aug; 1316():342800. PubMed ID: 38969435 [TBL] [Abstract][Full Text] [Related]
3. An ultra-sensitive electrochemical aptasensor for simultaneous quantitative detection of Pb Yuan M; Qian S; Cao H; Yu J; Ye T; Wu X; Chen L; Xu F Food Chem; 2022 Jul; 382():132173. PubMed ID: 35149468 [TBL] [Abstract][Full Text] [Related]
4. A novel ratiometric electrochemical aptasensor based on M-shaped functional DNA complexes for simultaneous detection of trace lead and mercury ions in series aquatic edible vegetables. Wang X; Xu M; Kuang Y; Liu X; Yuan J J Hazard Mater; 2024 Mar; 465():133169. PubMed ID: 38070266 [TBL] [Abstract][Full Text] [Related]
5. A Novel Aptamer-Imprinted Polymer-Based Electrochemical Biosensor for the Detection of Lead in Aquatic Products. Zhu N; Liu X; Peng K; Cao H; Yuan M; Ye T; Wu X; Yin F; Yu J; Hao L; Xu F Molecules; 2022 Dec; 28(1):. PubMed ID: 36615388 [TBL] [Abstract][Full Text] [Related]
6. A target-triggered ultra-sensitive aptasensor for simultaneous detection of Cd Pan Y; Wang L; Chen S; Wei Y; Wei X Food Chem; 2024 May; 440():138185. PubMed ID: 38100966 [TBL] [Abstract][Full Text] [Related]
7. Signal-Switchable Electrochemiluminescence System Coupled with Target Recycling Amplification Strategy for Sensitive Mercury Ion and Mucin 1 Assay. Jiang X; Wang H; Wang H; Yuan R; Chai Y Anal Chem; 2016 Sep; 88(18):9243-50. PubMed ID: 27529728 [TBL] [Abstract][Full Text] [Related]
8. Dual fluorescence resonance energy transfer assay between tunable upconversion nanoparticles and controlled gold nanoparticles for the simultaneous detection of Pb²⁺ and Hg²⁺. Wu S; Duan N; Shi Z; Fang C; Wang Z Talanta; 2014 Oct; 128():327-36. PubMed ID: 25059168 [TBL] [Abstract][Full Text] [Related]
9. Facile fabrication of an electrochemical aptasensor based on magnetic electrode by using streptavidin modified magnetic beads for sensitive and specific detection of Hg(2.). Wu D; Wang Y; Zhang Y; Ma H; Pang X; Hu L; Du B; Wei Q Biosens Bioelectron; 2016 Aug; 82():9-13. PubMed ID: 27031185 [TBL] [Abstract][Full Text] [Related]
10. Electrochemical Aptasensor Based on Sulfur-Nitrogen Codoped Ordered Mesoporous Carbon and Thymine-Hg Lai C; Liu S; Zhang C; Zeng G; Huang D; Qin L; Liu X; Yi H; Wang R; Huang F; Li B; Hu T ACS Sens; 2018 Dec; 3(12):2566-2573. PubMed ID: 30411617 [TBL] [Abstract][Full Text] [Related]
11. An aptasensor for selective, sensitive and fast detection of lead(II) based on polyethyleneimine and gold nanoparticles. Taghdisi SM; Danesh NM; Lavaee P; Ramezani M; Abnous K Environ Toxicol Pharmacol; 2015 May; 39(3):1206-11. PubMed ID: 25989533 [TBL] [Abstract][Full Text] [Related]
12. Simple and rapid chemiluminescence aptasensor for Hg Qi Y; Xiu FR; Yu G; Huang L; Li B Biosens Bioelectron; 2017 Jan; 87():439-446. PubMed ID: 27591718 [TBL] [Abstract][Full Text] [Related]
13. A label-free photoelectrochemical aptasensor for facile and ultrasensitive mercury ion assay based on a solution-phase photoactive probe and exonuclease III-assisted amplification. Xu N; Hou T; Li F Analyst; 2019 Jun; 144(12):3800-3806. PubMed ID: 31116196 [TBL] [Abstract][Full Text] [Related]
14. An electrochemical DNA biosensor for trace amounts of mercury ion quantification. Maâtouk F; Maâtouk M; Bekir K; Barhoumi H; Maaref A; Ben Mansour H J Water Health; 2016 Oct; 14(5):808-815. PubMed ID: 27740546 [TBL] [Abstract][Full Text] [Related]
15. A highly stable electrochemical sensor with antifouling and antibacterial capabilities for mercury ion detection in seawater. Meng W; Han X; Han R; Zhang X; Zeng X; Duan J; Luo X Anal Chim Acta; 2024 Jun; 1309():342685. PubMed ID: 38772667 [TBL] [Abstract][Full Text] [Related]
16. Combination of DNA walker and Pb Wu T; Wang C; Han X; Feng Q; Wang P Anal Chim Acta; 2022 Aug; 1222():340179. PubMed ID: 35934423 [TBL] [Abstract][Full Text] [Related]
17. Electrochemiluminescence aptasensor for multiple determination of Hg Feng D; Li P; Tan X; Wu Y; Wei F; Du F; Ai C; Luo Y; Chen Q; Han H Anal Chim Acta; 2020 Mar; 1100():232-239. PubMed ID: 31987146 [TBL] [Abstract][Full Text] [Related]
18. Photoelectrochemical aptasensor for lead(II) by exploiting the CdS nanoparticle-assisted photoactivity of TiO Niu Y; Luo G; Xie H; Zhuang Y; Wu X; Li G; Sun W Mikrochim Acta; 2019 Nov; 186(12):826. PubMed ID: 31754803 [TBL] [Abstract][Full Text] [Related]
19. Label-free electrochemical lead (II) aptasensor using thionine as the signaling molecule and graphene as signal-enhancing platform. Gao F; Gao C; He S; Wang Q; Wu A Biosens Bioelectron; 2016 Jul; 81():15-22. PubMed ID: 26913503 [TBL] [Abstract][Full Text] [Related]
20. In situ fabrication of urchin-like Cu@carbon nanoneedles based aptasensor for ultrasensitive recognition of trace mercury ion. Liu T; Lin B; Yuan X; Chu Z; Jin W Biosens Bioelectron; 2022 Jun; 206():114147. PubMed ID: 35276462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]