These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 35437276)

  • 1. Outcome-Locked Cholinergic Signaling Suppresses Prefrontal Encoding of Stimulus Associations.
    Tu G; Halawa A; Yu X; Gillman S; Takehara-Nishiuchi K
    J Neurosci; 2022 May; 42(20):4202-4214. PubMed ID: 35437276
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prefrontal projections to the nucleus reuniens signal behavioral relevance of stimuli during associative learning.
    Yu X; Jembere F; Takehara-Nishiuchi K
    Sci Rep; 2022 Jul; 12(1):11995. PubMed ID: 35835794
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preferential cholinergic excitation of corticopontine neurons.
    Baker AL; O'Toole RJ; Gulledge AT
    J Physiol; 2018 May; 596(9):1659-1679. PubMed ID: 29330867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scopolamine Impairs Appetitive But Not Aversive Trace Conditioning: Role of the Medial Prefrontal Cortex.
    Pezze MA; Marshall HJ; Cassaday HJ
    J Neurosci; 2017 Jun; 37(26):6289-6298. PubMed ID: 28559376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distributed representations of temporal stimulus associations across regular-firing and fast-spiking neurons in rat medial prefrontal cortex.
    Xing B; Morrissey MD; Takehara-Nishiuchi K
    J Neurophysiol; 2020 Jan; 123(1):439-450. PubMed ID: 31851558
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Emergence of a Stable Neuronal Ensemble from a Wider Pool of Activated Neurons in the Dorsal Medial Prefrontal Cortex during Appetitive Learning in Mice.
    Brebner LS; Ziminski JJ; Margetts-Smith G; Sieburg MC; Reeve HM; Nowotny T; Hirrlinger J; Heintz TG; Lagnado L; Kato S; Kobayashi K; Ramsey LA; Hall CN; Crombag HS; Koya E
    J Neurosci; 2020 Jan; 40(2):395-410. PubMed ID: 31727794
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cholinergic excitation in mouse primary vs. associative cortex: region-specific magnitude and receptor balance.
    Tian MK; Bailey CD; Lambe EK
    Eur J Neurosci; 2014 Aug; 40(4):2608-18. PubMed ID: 24827827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prefrontal Theta Oscillations Promote Selective Encoding of Behaviorally Relevant Events.
    Jarovi J; Volle J; Yu X; Guan L; Takehara-Nishiuchi K
    eNeuro; 2018; 5(6):. PubMed ID: 30693310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Experiencing CS-US Pairings on Instructed Fear Reversal.
    Wisniewski D; Braem S; González-García C; De Houwer J; Brass M
    J Neurosci; 2023 Jul; 43(30):5546-5558. PubMed ID: 37414559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cholinergic Reinforcement Signaling Is Impaired by Amyloidosis Prior to Its Synaptic Loss.
    Allard S; Hussain Shuler MG
    J Neurosci; 2023 Oct; 43(42):6988-7005. PubMed ID: 37648452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Cholinergic Basal Forebrain Links Auditory Stimuli with Delayed Reinforcement to Support Learning.
    Guo W; Robert B; Polley DB
    Neuron; 2019 Sep; 103(6):1164-1177.e6. PubMed ID: 31351757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptic Release of Acetylcholine Rapidly Suppresses Cortical Activity by Recruiting Muscarinic Receptors in Layer 4.
    Dasgupta R; Seibt F; Beierlein M
    J Neurosci; 2018 Jun; 38(23):5338-5350. PubMed ID: 29739869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association learning-dependent increases in acetylcholine release in the rat auditory cortex during auditory classical conditioning.
    Butt AE; Chavez CM; Flesher MM; Kinney-Hurd BL; Araujo GC; Miasnikov AA; Weinberger NM
    Neurobiol Learn Mem; 2009 Oct; 92(3):400-9. PubMed ID: 19467339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast Cortical Gain Adaptation in the Human Brain by Trial-To-Trial Changes of Associative Strength in Fear Learning.
    Yuan M; Giménez-Fernández T; Méndez-Bértolo C; Moratti S
    J Neurosci; 2018 Sep; 38(38):8262-8276. PubMed ID: 30104342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cue-Evoked Dopamine Promotes Conditioned Responding during Learning.
    Morrens J; Aydin Ç; Janse van Rensburg A; Esquivelzeta Rabell J; Haesler S
    Neuron; 2020 Apr; 106(1):142-153.e7. PubMed ID: 32027824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Regulation of Prelimbic and Thalamic Transmission to the Basolateral Amygdala by Acetylcholine Receptors.
    Tryon SC; Bratsch-Prince JX; Warren JW; Jones GC; McDonald AJ; Mott DD
    J Neurosci; 2023 Feb; 43(5):722-735. PubMed ID: 36535767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential acetylcholine release in the prefrontal cortex and hippocampus during pavlovian trace and delay conditioning.
    Flesher MM; Butt AE; Kinney-Hurd BL
    Neurobiol Learn Mem; 2011 Sep; 96(2):181-91. PubMed ID: 21514394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cholinergic system and spatial learning.
    Deiana S; Platt B; Riedel G
    Behav Brain Res; 2011 Aug; 221(2):389-411. PubMed ID: 21108971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basal Forebrain Cholinergic Neurons Selectively Drive Coordinated Motor Learning in Mice.
    Li Y; Hollis E
    J Neurosci; 2021 Dec; 41(49):10148-10160. PubMed ID: 34750228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Medial Prefrontal Cortex-Pontine Nuclei Projections Modulate Suboptimal Cue-Induced Associative Motor Learning.
    Wu GY; Liu SL; Yao J; Sun L; Wu B; Yang Y; Li X; Sun QQ; Feng H; Sui JF
    Cereb Cortex; 2018 Mar; 28(3):880-893. PubMed ID: 28077515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.