These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 35437690)
1. Local-Scale Damming Impact on the Planktonic Bacterial and Eukaryotic Assemblages in the upper Yangtze River. Li H; Li Z; Tang Q; Li R; Lu L Microb Ecol; 2023 May; 85(4):1323-1337. PubMed ID: 35437690 [TBL] [Abstract][Full Text] [Related]
2. Damming river shapes distinct patterns and processes of planktonic bacterial and microeukaryotic communities. Lu L; Tang Q; Li H; Li Z Environ Microbiol; 2022 Apr; 24(4):1760-1774. PubMed ID: 35018701 [TBL] [Abstract][Full Text] [Related]
3. Dam construction alters planktonic microbial predator‒prey communities in the urban reaches of the Yangtze River. Wang Q; Chen J; Qi W; Wang D; Lin H; Wu X; Wang D; Bai Y; Qu J Water Res; 2023 Feb; 230():119575. PubMed ID: 36623385 [TBL] [Abstract][Full Text] [Related]
4. Integrated biogeography of planktonic and sedimentary bacterial communities in the Yangtze River. Liu T; Zhang AN; Wang J; Liu S; Jiang X; Dang C; Ma T; Liu S; Chen Q; Xie S; Zhang T; Ni J Microbiome; 2018 Jan; 6(1):16. PubMed ID: 29351813 [TBL] [Abstract][Full Text] [Related]
5. How bacterioplankton community can go with cascade damming in the highly regulated Lancang-Mekong River Basin. Wang X; Wang C; Wang P; Chen J; Miao L; Feng T; Yuan Q; Liu S Mol Ecol; 2018 Nov; 27(22):4444-4458. PubMed ID: 30225945 [TBL] [Abstract][Full Text] [Related]
6. Differences of bacterioplankton communities between the source and upstream regions of the Yangtze River: microbial structure, co-occurrence pattern, and environmental influencing factors. Zhang Q; Zhao J; Wang G; Guan H; Wang S; Yang J; Zhang J; Jian S; Ouyang L; Wu Z; Li A Braz J Microbiol; 2024 Mar; 55(1):571-586. PubMed ID: 38302737 [TBL] [Abstract][Full Text] [Related]
7. Distinct drivers of bacterial community assembly processes in riverine islands in the middle and lower reaches of the Yangtze River. Yao L; Wu J; Liu S; Xing H; Wang P; Gao W; Wu Z; Zhou Q Microbiol Spectr; 2024 Aug; 12(8):e0081824. PubMed ID: 38869307 [TBL] [Abstract][Full Text] [Related]
8. Assessment of dam effects on streams and fish assemblages of the conterminous USA. Cooper AR; Infante DM; Daniel WM; Wehrly KE; Wang L; Brenden TO Sci Total Environ; 2017 May; 586():879-889. PubMed ID: 28233615 [TBL] [Abstract][Full Text] [Related]
9. Small run-of-river hydropower dams and associated water regulation filter benthic diatom traits and affect functional diversity. Wang Y; Wu N; Tang T; Wang Y; Cai Q Sci Total Environ; 2022 Mar; 813():152566. PubMed ID: 34952048 [TBL] [Abstract][Full Text] [Related]
10. How do small dams alter river food webs? A food quality perspective along the aquatic food web continuum. Huang J; Guo F; Burford MA; Kainz M; Li F; Gao W; Ouyang X; Zhang Y J Environ Manage; 2024 Mar; 355():120501. PubMed ID: 38437746 [TBL] [Abstract][Full Text] [Related]
11. Assembly dynamics of eukaryotic plankton and bacterioplankton in the Yangtze River estuary: A hybrid community perspective. Wang T; Liu R; Huang G; Tian X; Zhang Y; He M; Wang C Mar Environ Res; 2024 Apr; 196():106414. PubMed ID: 38394975 [TBL] [Abstract][Full Text] [Related]
12. [Distribution Characteristics and Influencing Factors of Abundant and Rare Planktonic Microeukaryotes in Jinsha River]. Yan BC; Cui G; Sun SH; Wang PF; Wang C; Wu C; Chen J Huan Jing Ke Xue; 2023 Jul; 44(7):3864-3871. PubMed ID: 37438285 [TBL] [Abstract][Full Text] [Related]
14. Dam construction alters the traits of health-related microbes along the Yangtze River. Wang Q; Chen J; Qi W; Bai Y; Mao J; Qu J Sci Total Environ; 2024 Nov; 953():176077. PubMed ID: 39244052 [TBL] [Abstract][Full Text] [Related]
15. Does large dam removal restore downstream riparian vegetation diversity? Testing predictions on the Elwha River, Washington, USA. Brown RL; Thomas CC; Cubley ES; Clausen AJ; Shafroth PB Ecol Appl; 2022 Sep; 32(6):e2591. PubMed ID: 35343023 [TBL] [Abstract][Full Text] [Related]
16. River damming enhances ecological functional stability of planktonic microorganisms. Li W; Wang B; Liu N; Yang M; Liu CQ; Xu S Front Microbiol; 2022; 13():1049120. PubMed ID: 36532475 [TBL] [Abstract][Full Text] [Related]
17. Planktonic eukaryotes in the Chesapeake Bay: contrasting responses of abundant and rare taxa to estuarine gradients. Wang H; Liu F; Wang M; Bettarel Y; Eissler Y; Chen F; Kan J Microbiol Spectr; 2024 May; 12(5):e0404823. PubMed ID: 38606959 [TBL] [Abstract][Full Text] [Related]
18. Responses of macroinvertebrate functional trait structure to river damming: From within-river to basin-scale patterns. Wang J; Bao S; Zhang K; Heino J; Jiang X; Liu Z; Tao J Environ Res; 2023 Mar; 220():115255. PubMed ID: 36634889 [TBL] [Abstract][Full Text] [Related]
19. Elucidating potential bioindicators from insights in the diversity and assembly processes of prokaryotic and eukaryotic communities in the Mekong River. Siriarchawatana P; Harnpicharnchai P; Phithakrotchanakoon C; Kitikhun S; Mayteeworakoon S; Chunhametha S; Eurwilaichitr L; Ingsriswang S Environ Res; 2024 Feb; 243():117800. PubMed ID: 38056615 [TBL] [Abstract][Full Text] [Related]
20. Changes in floodplain hydrology following serial damming of the Tocantins River in the eastern Amazon. Swanson AC; Kaplan D; Toh KB; Marques EE; Bohlman SA Sci Total Environ; 2021 Dec; 800():149494. PubMed ID: 34391162 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]