These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35438030)

  • 1. Validating a Semi-Automated Technique for Segmenting Femoral Articular Cartilage on Ultrasound Images.
    Harkey MS; Michel N; Kuenze C; Fajardo R; Salzler M; Driban JB; Hacihaliloglu I
    Cartilage; 2022; 13(2):19476035221093069. PubMed ID: 35438030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reliability of a Novel Semiautomated Ultrasound Segmentation Technique for Assessing Average Regional Femoral Articular Cartilage Thickness.
    Lisee C; McGrath ML; Kuenze C; Zhang M; Salzler M; Driban JB; Harkey MS
    J Sport Rehabil; 2020 Sep; 29(7):1042-1046. PubMed ID: 32473587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Longitudinal Changes in Ultrasound-Assessed Femoral Cartilage Thickness in Individuals from 4 to 6 Months Following Anterior Cruciate Ligament Reconstruction.
    Lisee C; Harkey M; Walker Z; Pfeiffer K; Covassin T; Kovan J; Currie KD; Kuenze C
    Cartilage; 2021 Dec; 13(1_suppl):738S-746S. PubMed ID: 34384276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femoral Cartilage Ultrasound Echo Intensity Associates with Arthroscopic Cartilage Damage.
    Harkey MS; Little E; Thompson M; Zhang M; Driban JB; Salzler MJ
    Ultrasound Med Biol; 2021 Jan; 47(1):43-50. PubMed ID: 33082054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic MRI-based Three-dimensional Models of Hip Cartilage Provide Improved Morphologic and Biochemical Analysis.
    Schmaranzer F; Helfenstein R; Zeng G; Lerch TD; Novais EN; Wylie JD; Kim YJ; Siebenrock KA; Tannast M; Zheng G
    Clin Orthop Relat Res; 2019 May; 477(5):1036-1052. PubMed ID: 30998632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method for Segmentation of Knee Articular Cartilages Based on Contrast-Enhanced CT Images.
    Myller KAH; Honkanen JTJ; Jurvelin JS; Saarakkala S; Töyräs J; Väänänen SP
    Ann Biomed Eng; 2018 Nov; 46(11):1756-1767. PubMed ID: 30132213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precision, Reliability, and Responsiveness of a Novel Automated Quantification Tool for Cartilage Thickness: Data from the Osteoarthritis Initiative.
    Bowes MA; Guillard GA; Vincent GR; Brett AD; Wolstenholme CBH; Conaghan PG
    J Rheumatol; 2020 Feb; 47(2):282-289. PubMed ID: 30988122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pre-Operative Femoral Cartilage Ultrasound Characteristics Are Altered in People Who Report Symptoms at 1 year After Anterior Cruciate Ligament Reconstruction.
    Harkey MS; Driban JB; Kuenze C; Zhang M; Salzler MJ
    Ultrasound Med Biol; 2021 Jul; 47(7):1976-1984. PubMed ID: 33931287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation of Knee MR Imaging Data to Determine Relaxometry and Morphometry.
    Norman B; Pedoia V; Majumdar S
    Radiology; 2018 Jul; 288(1):177-185. PubMed ID: 29584598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reproducibility of an Automated Quantitative MRI Assessment of Low-Grade Knee Articular Cartilage Lesions.
    Juras V; Szomolanyi P; Schreiner MM; Unterberger K; Kurekova A; Hager B; Laurent D; Raithel E; Meyer H; Trattnig S
    Cartilage; 2021 Dec; 13(1_suppl):646S-657S. PubMed ID: 32988236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clinical validation of the use of prototype software for automatic cartilage segmentation to quantify knee cartilage in volunteers.
    Zhang P; Zhang RX; Chen XS; Zhou XY; Raithel E; Cui JL; Zhao J
    BMC Musculoskelet Disord; 2022 Jan; 23(1):19. PubMed ID: 34980107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images.
    Neubert A; Yang Z; Engstrom C; Xia Y; Strudwick MW; Chandra SS; Fripp J; Crozier S
    Med Phys; 2016 Oct; 43(10):5370. PubMed ID: 27782728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative MR imaging using "LiveWire" to measure tibiofemoral articular cartilage thickness.
    Bowers ME; Trinh N; Tung GA; Crisco JJ; Kimia BB; Fleming BC
    Osteoarthritis Cartilage; 2008 Oct; 16(10):1167-73. PubMed ID: 18407529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The optimisation of deep neural networks for segmenting multiple knee joint tissues from MRIs.
    Kessler DA; MacKay JW; Crowe VA; Henson FMD; Graves MJ; Gilbert FJ; Kaggie JD
    Comput Med Imaging Graph; 2020 Dec; 86():101793. PubMed ID: 33075675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Knee cartilage segmentation and thickness computation from ultrasound images.
    Faisal A; Ng SC; Goh SL; Lai KW
    Med Biol Eng Comput; 2018 Apr; 56(4):657-669. PubMed ID: 28849317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intra- and inter-observer reproducibility of volume measurement of knee cartilage segmented from the OAI MR image set using a novel semi-automated segmentation method.
    Bae KT; Shim H; Tao C; Chang S; Wang JH; Boudreau R; Kwoh CK
    Osteoarthritis Cartilage; 2009 Dec; 17(12):1589-97. PubMed ID: 19577672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified radial-search algorithm for segmentation of tibiofemoral cartilage in MR images of patients with subchondral lesion.
    Thaha R; Jogi SP; Rajan S; Mahajan V; Venugopal VK; Mehndiratta A; Singh A
    Int J Comput Assist Radiol Surg; 2020 Mar; 15(3):403-413. PubMed ID: 31927688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Association between gait mechanics and ultrasonographic measures of femoral cartilage thickness in individuals with ACL reconstruction.
    Pamukoff DN; Montgomery MM; Holmes SC; Moffit TJ; Garcia SA; Vakula MN
    Gait Posture; 2018 Sep; 65():221-227. PubMed ID: 30558935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Open Source Software for Automatic Subregional Assessment of Knee Cartilage Degradation Using Quantitative T2 Relaxometry and Deep Learning.
    Thomas KA; Krzemiński D; Kidziński Ł; Paul R; Rubin EB; Halilaj E; Black MS; Chaudhari A; Gold GE; Delp SL
    Cartilage; 2021 Dec; 13(1_suppl):747S-756S. PubMed ID: 34496667
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Anterior Cruciate Ligament Deficiency on Tibiofemoral Cartilage Thickness and Strains in Response to Hopping.
    Sutter EG; Liu B; Utturkar GM; Widmyer MR; Spritzer CE; Cutcliffe HC; Englander ZA; Goode AP; Garrett WE; DeFrate LE
    Am J Sports Med; 2019 Jan; 47(1):96-103. PubMed ID: 30365903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.