These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 35438245)

  • 1. Lignin-First Depolymerization of Lignocellulose into Monophenols over Carbon Nanotube-Supported Ruthenium: Impact of Lignin Sources.
    Su S; Xiao LP; Chen X; Wang S; Chen XH; Guo Y; Zhai SR
    ChemSusChem; 2022 Jun; 15(12):e202200365. PubMed ID: 35438245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rational highly dispersed ruthenium for reductive catalytic fractionation of lignocellulose.
    Liu Z; Li H; Gao X; Guo X; Wang S; Fang Y; Song G
    Nat Commun; 2022 Aug; 13(1):4716. PubMed ID: 35953497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective hydrogenolysis of catechyl lignin into propenylcatechol over an atomically dispersed ruthenium catalyst.
    Wang S; Zhang K; Li H; Xiao LP; Song G
    Nat Commun; 2021 Jan; 12(1):416. PubMed ID: 33462206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimetallic polyoxometalates catalysts for efficient lignin depolymerization: Unlocking valuable aromatic compounds from renewable feedstock.
    Zhang Y; Jia S; Wang X; Deng H; Xu W; Shi J
    Int J Biol Macromol; 2023 Dec; 253(Pt 6):127363. PubMed ID: 37827421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic Lignin Depolymerization to Aromatic Chemicals.
    Zhang C; Wang F
    Acc Chem Res; 2020 Feb; 53(2):470-484. PubMed ID: 31999099
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative Catalytic Depolymerization of Lignin into Value-Added Monophenols by Carbon Nanotube-Supported Cu-Based Catalysts.
    Tang C; Cao Y; Gao J; Luo G; Fan J; Clark JH; Zhang S
    Molecules; 2024 Oct; 29(19):. PubMed ID: 39407690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of Aromatic Compounds by Catalytic Depolymerization of Technical and Downstream Biorefinery Lignins.
    Cornejo A; Bimbela F; Moreira R; Hablich K; García-Yoldi Í; Maisterra M; Portugal A; Gandía LM; Martínez-Merino V
    Biomolecules; 2020 Sep; 10(9):. PubMed ID: 32962141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery.
    Galkin MV; Samec JS
    ChemSusChem; 2016 Jul; 9(13):1544-58. PubMed ID: 27273230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lignin Compounds to Monoaromatics: Selective Cleavage of C-O Bonds over a Brominated Ruthenium Catalyst.
    Wu D; Wang Q; Safonova OV; Peron DV; Zhou W; Yan Z; Marinova M; Khodakov AY; Ordomsky VV
    Angew Chem Int Ed Engl; 2021 May; 60(22):12513-12523. PubMed ID: 33730419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic Conversion of Lignin into Valuable Chemicals: Full Utilization of Aromatic Nuclei and Side Chains.
    Zhang B; Meng Q; Liu H; Han B
    Acc Chem Res; 2023 Dec; 56(24):3558-3571. PubMed ID: 38029298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative cleavage of C-C bonds in lignin.
    Subbotina E; Rukkijakan T; Marquez-Medina MD; Yu X; Johnsson M; Samec JSM
    Nat Chem; 2021 Nov; 13(11):1118-1125. PubMed ID: 34556848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin hydrogenolysis: Tuning the reaction by lignin chemistry.
    Chen M; Li Y; Liu H; Zhang D; Guo Y; Shi QS; Xie X
    Int J Biol Macromol; 2024 Nov; 279(Pt 2):135169. PubMed ID: 39218172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deconstruction of biomass into lignin oil and platform chemicals over heteropoly acids with carbon-supported palladium as a hybrid catalyst under mild conditions.
    Zhang H; Zhang H; Tian S; Fu S
    Bioresour Technol; 2021 Dec; 341():125848. PubMed ID: 34467890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Volatile-char interactions during biomass pyrolysis: Cleavage of C-C bond in a β-5 lignin model dimer by amino-modified graphitized carbon nanotube.
    Huang Y; Liu S; Zhang J; Syed-Hassan SSA; Hu X; Sun H; Zhu X; Zhou J; Zhang S; Zhang H
    Bioresour Technol; 2020 Jul; 307():123192. PubMed ID: 32220819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogenolysis of β-O-4 lignin model dimers by a ruthenium-xantphos catalyst.
    Wu A; Patrick BO; Chung E; James BR
    Dalton Trans; 2012 Aug; 41(36):11093-106. PubMed ID: 22864631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sustainable depolymerization of lignin into aromatic compounds using amphiphilic Anderson-type polyoxometalate catalysts.
    Wei N; Xu W; Li S; Shi J
    Int J Biol Macromol; 2024 Oct; 277(Pt 2):133257. PubMed ID: 38908616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignin Hydrogenolysis: Improving Lignin Disassembly through Formaldehyde Stabilization.
    Kärkäs MD
    ChemSusChem; 2017 May; 10(10):2111-2115. PubMed ID: 28394095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic Transformation of Lignocellulosic Biomass into Arenes, 5-Hydroxymethylfurfural, and Furfural.
    Guo T; Li X; Liu X; Guo Y; Wang Y
    ChemSusChem; 2018 Aug; 11(16):2758-2765. PubMed ID: 30009402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic hydrogenolysis of lignin in ethanol/isopropanol over an activated carbon supported nickel-copper catalyst.
    Cheng C; Li P; Yu W; Shen D; Gu S
    Bioresour Technol; 2021 Jan; 319():124238. PubMed ID: 33254461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Task-Specific Catalyst Development for Lignin-First Biorefinery toward Hemicellulose Retention or Feedstock Extension.
    Qiu S; Guo X; Huang Y; Fang Y; Tan T
    ChemSusChem; 2019 Feb; 12(4):944-954. PubMed ID: 30508279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.