BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35438481)

  • 1. Gene-Guided Discovery and Ribosomal Biosynthesis of Moroidin Peptides.
    Kersten RD; Mydy LS; Fallon TR; de Waal F; Shafiq K; Wotring JW; Sexton JZ; Weng JK
    J Am Chem Soc; 2022 May; 144(17):7686-7692. PubMed ID: 35438481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Celogentins A-C, new antimitotic bicyclic peptides from the seeds of Celosia argentea.
    Kobayashi J; Suzuki H; Shimbo K; Takeya K; Morita H
    J Org Chem; 2001 Oct; 66(20):6626-33. PubMed ID: 11578213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An intramolecular macrocyclase in plant ribosomal peptide biosynthesis.
    Mydy LS; Hungerford J; Chigumba DN; Konwerski JR; Jantzi SC; Wang D; Smith JL; Kersten RD
    Nat Chem Biol; 2024 Apr; 20(4):530-540. PubMed ID: 38355722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery and biosynthesis of cyclic plant peptides via autocatalytic cyclases.
    Chigumba DN; Mydy LS; de Waal F; Li W; Shafiq K; Wotring JW; Mohamed OG; Mladenovic T; Tripathi A; Sexton JZ; Kautsar S; Medema MH; Kersten RD
    Nat Chem Biol; 2022 Jan; 18(1):18-28. PubMed ID: 34811516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antimitotic activity of moroidin, a bicyclic peptide from the seeds of Celosia argentea.
    Morita H; Shimbo K; Shigemori H; Kobayashi J
    Bioorg Med Chem Lett; 2000 Mar; 10(5):469-71. PubMed ID: 10743950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moroidin, a Cyclopeptide from the Seeds of
    Xu X; Jiang N; Liu S; Jin Y; Cheng Y; Xu T; Wang X; Liu Y; Zhang M; Du S; Fan J; Zhang A
    J Nat Prod; 2022 Aug; 85(8):1918-1927. PubMed ID: 35951980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant peptides - redefining an area of ribosomally synthesized and post-translationally modified peptides.
    Chekan JR; Mydy LS; Pasquale MA; Kersten RD
    Nat Prod Rep; 2024 Feb; ():. PubMed ID: 38411572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene-guided discovery and engineering of branched cyclic peptides in plants.
    Kersten RD; Weng JK
    Proc Natl Acad Sci U S A; 2018 Nov; 115(46):E10961-E10969. PubMed ID: 30373830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stephanotic acid, a novel cyclic pentapeptide from the stem of Stephanotis floribunda.
    Yoshikawa K; Tao S; Arihara S
    J Nat Prod; 2000 Apr; 63(4):540-2. PubMed ID: 10785436
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Widely Distributed Biosynthetic Cassette Is Responsible for Diverse Plant Side Chain Cross-Linked Cyclopeptides.
    Lima ST; Ampolini BG; Underwood EB; Graf TN; Earp CE; Khedi IC; Pasquale MA; Chekan JR
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202218082. PubMed ID: 36529706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Celogentin mimetics as inhibitors of tubulin polymerization.
    Thombare VJ; Holden JA; Reynolds EC; O'Brien-Simpson NM; Hutton CA
    J Pept Sci; 2020 Mar; 26(3):e3239. PubMed ID: 31847053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and Biosynthesis of Crocagins: Polycyclic Posttranslationally Modified Ribosomal Peptides from Chondromyces crocatus.
    Viehrig K; Surup F; Volz C; Herrmann J; Abou Fayad A; Adam S; Köhnke J; Trauner D; Müller R
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7407-7410. PubMed ID: 28544148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Topologically Distinct Modified Peptide with Multiple Bicyclic Core Motifs Expands the Diversity of Microviridin-Like Peptides.
    Roh H; Han Y; Lee H; Kim S
    Chembiochem; 2019 Apr; 20(8):1051-1059. PubMed ID: 30576039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs).
    Cao L; Do T; Link AJ
    J Ind Microbiol Biotechnol; 2021 Jun; 48(3-4):. PubMed ID: 33928382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discovery of novel fungal RiPP biosynthetic pathways and their application for the development of peptide therapeutics.
    Vogt E; Künzler M
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5567-5581. PubMed ID: 31147756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria.
    Letzel AC; Pidot SJ; Hertweck C
    BMC Genomics; 2014 Nov; 15(1):983. PubMed ID: 25407095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Natural Bridged Bicyclic Peptide Macrobiomolecules from
    Dahiya S; Dahiya R; Fuloria NK; Mourya R; Dahiya S; Fuloria S; Kumar S; Shrivastava J; Saharan R; Chennupati SV; Patel JK
    Mini Rev Med Chem; 2022; 22(13):1772-1788. PubMed ID: 35049431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New Insights into the Biosynthetic Logic of Ribosomally Synthesized and Post-translationally Modified Peptide Natural Products.
    Ortega MA; van der Donk WA
    Cell Chem Biol; 2016 Jan; 23(1):31-44. PubMed ID: 26933734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Self-Sacrificing N-Methyltransferase Is the Precursor of the Fungal Natural Product Omphalotin.
    Ramm S; Krawczyk B; Mühlenweg A; Poch A; Mösker E; Süssmuth RD
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9994-9997. PubMed ID: 28715095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ribosomal Synthesis of Thioether-Bridged Bicyclic Peptides.
    Bionda N; Fasan R
    Methods Mol Biol; 2017; 1495():57-76. PubMed ID: 27714610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.