BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 35438481)

  • 21. A Self-Sacrificing N-Methyltransferase Is the Precursor of the Fungal Natural Product Omphalotin.
    Ramm S; Krawczyk B; Mühlenweg A; Poch A; Mösker E; Süssmuth RD
    Angew Chem Int Ed Engl; 2017 Aug; 56(33):9994-9997. PubMed ID: 28715095
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ribosomal Synthesis of Thioether-Bridged Bicyclic Peptides.
    Bionda N; Fasan R
    Methods Mol Biol; 2017; 1495():57-76. PubMed ID: 27714610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ribosomal Synthesis of Natural-Product-Like Bicyclic Peptides in Escherichia coli.
    Bionda N; Fasan R
    Chembiochem; 2015 Sep; 16(14):2011-6. PubMed ID: 26179106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the macrocyclase involved in the biosynthesis of RiPP cyclic peptides in plants.
    Chekan JR; Estrada P; Covello PS; Nair SK
    Proc Natl Acad Sci U S A; 2017 Jun; 114(25):6551-6556. PubMed ID: 28584123
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The role of protein-protein interactions in the biosynthesis of ribosomally synthesized and post-translationally modified peptides.
    Sikandar A; Koehnke J
    Nat Prod Rep; 2019 Nov; 36(11):1576-1588. PubMed ID: 30920567
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioinspired strategy for the ribosomal synthesis of thioether-bridged macrocyclic peptides in bacteria.
    Bionda N; Cryan AL; Fasan R
    ACS Chem Biol; 2014 Sep; 9(9):2008-13. PubMed ID: 25079213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enzymatic macrocyclization of ribosomally synthesized and posttranslational modified peptides
    Lu J; Li Y; Bai Z; Lv H; Wang H
    Nat Prod Rep; 2021 May; 38(5):981-992. PubMed ID: 33185226
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A pair of cyclopeptide epimers from the seeds of Celosia argentea.
    Liu FJ; Zhu ZH; Jiang Y; Li HJ
    Chin J Nat Med; 2018 Jan; 16(1):63-69. PubMed ID: 29425591
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Alternative Linkage Chemistries in the Chemoenzymatic Synthesis of Microviridin-Based Cyclic Peptides.
    Patel KP; Chen WT; Delbecq L; Bruner SD
    Org Lett; 2024 Feb; 26(6):1138-1142. PubMed ID: 38306609
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Challenges and advances in genome mining of ribosomally synthesized and post-translationally modified peptides (RiPPs).
    Zhong Z; He B; Li J; Li YX
    Synth Syst Biotechnol; 2020 Sep; 5(3):155-172. PubMed ID: 32637669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis.
    Yang X; van der Donk WA
    Chemistry; 2013 Jun; 19(24):7662-77. PubMed ID: 23666908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expanding the Structural Space of Ribosomal Peptides: Autocatalytic N-Methylation in Omphalotin Biosynthesis.
    Aldemir H; Gulder TAM
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13570-13572. PubMed ID: 28949431
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining.
    Skinnider MA; Johnston CW; Edgar RE; Dejong CA; Merwin NJ; Rees PN; Magarvey NA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6343-E6351. PubMed ID: 27698135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of the celogentin C right-hand ring.
    He L; Yang L; Castle SL
    Org Lett; 2006 Mar; 8(6):1165-8. PubMed ID: 16524294
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enzymatic Cross-Linking of Side Chains Generates a Modified Peptide with Four Hairpin-like Bicyclic Repeats.
    Lee H; Park Y; Kim S
    Biochemistry; 2017 Sep; 56(37):4927-4930. PubMed ID: 28841794
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ribosomally-synthesised cyclic peptides from plants as drug leads and pharmaceutical scaffolds.
    Craik DJ; Lee MH; Rehm FBH; Tombling B; Doffek B; Peacock H
    Bioorg Med Chem; 2018 Jun; 26(10):2727-2737. PubMed ID: 28818463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DeepRiPP integrates multiomics data to automate discovery of novel ribosomally synthesized natural products.
    Merwin NJ; Mousa WK; Dejong CA; Skinnider MA; Cannon MJ; Li H; Dial K; Gunabalasingam M; Johnston C; Magarvey NA
    Proc Natl Acad Sci U S A; 2020 Jan; 117(1):371-380. PubMed ID: 31871149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The RaPID Platform for the Discovery of Pseudo-Natural Macrocyclic Peptides.
    Goto Y; Suga H
    Acc Chem Res; 2021 Sep; 54(18):3604-3617. PubMed ID: 34505781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Investigation of the Biosynthesis of the Lasso Peptide Chaxapeptin Using an E. coli-Based Production System.
    Martin-Gómez H; Linne U; Albericio F; Tulla-Puche J; Hegemann JD
    J Nat Prod; 2018 Sep; 81(9):2050-2056. PubMed ID: 30178995
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.