These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 35438481)

  • 41. Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink.
    Schramma KR; Bushin LB; Seyedsayamdost MR
    Nat Chem; 2015 May; 7(5):431-437. PubMed ID: 25901822
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A family of small, cyclic peptides buried in preproalbumin since the Eocene epoch.
    Fisher MF; Zhang J; Taylor NL; Howard MJ; Berkowitz O; Debowski AW; Behsaz B; Whelan J; Pevzner PA; Mylne JS
    Plant Direct; 2018 Feb; 2(2):. PubMed ID: 30417166
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Exploring and exploiting plant cyclic peptides for drug discovery and development.
    Zhang J; Yuan J; Li Z; Fu C; Xu M; Yang J; Jiang X; Zhou B; Ye X; Xu C
    Med Res Rev; 2021 Nov; 41(6):3096-3117. PubMed ID: 33599316
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Phage Selection of Cyclic Peptides for Application in Research and Drug Development.
    Deyle K; Kong XD; Heinis C
    Acc Chem Res; 2017 Aug; 50(8):1866-1874. PubMed ID: 28719188
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cell-Free Biosynthesis to Evaluate Lasso Peptide Formation and Enzyme-Substrate Tolerance.
    Si Y; Kretsch AM; Daigh LM; Burk MJ; Mitchell DA
    J Am Chem Soc; 2021 Apr; 143(15):5917-5927. PubMed ID: 33823110
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Celogenamide A, a new cyclic peptide from the seeds of Celosia argentea.
    Morita H; Suzuki H; Kobayashi J
    J Nat Prod; 2004 Sep; 67(9):1628-30. PubMed ID: 15387679
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Steric complementarity directs sequence promiscuous leader binding in RiPP biosynthesis.
    Chekan JR; Ongpipattanakul C; Nair SK
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24049-24055. PubMed ID: 31719203
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catalytic asymmetric synthesis of the central tryptophan residue of celogentin C.
    Castle SL; Srikanth GS
    Org Lett; 2003 Oct; 5(20):3611-4. PubMed ID: 14507185
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Total synthesis of the antimitotic bicyclic peptide celogentin C.
    Ma B; Banerjee B; Litvinov DN; He L; Castle SL
    J Am Chem Soc; 2010 Jan; 132(3):1159-71. PubMed ID: 20038144
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The tryptophan connection: cyclic peptide natural products linked
    Swain JA; Walker SR; Calvert MB; Brimble MA
    Nat Prod Rep; 2022 Feb; 39(2):410-443. PubMed ID: 34581375
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Insights into the catalysis of a lysine-tryptophan bond in bacterial peptides by a SPASM domain radical
    Benjdia A; Decamps L; Guillot A; Kubiak X; Ruffié P; Sandström C; Berteau O
    J Biol Chem; 2017 Jun; 292(26):10835-10844. PubMed ID: 28476884
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biosynthesis of Cittilins, Unusual Ribosomally Synthesized and Post-translationally Modified Peptides from
    Hug JJ; Dastbaz J; Adam S; Revermann O; Koehnke J; Krug D; Müller R
    ACS Chem Biol; 2020 Aug; 15(8):2221-2231. PubMed ID: 32639716
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Biosynthesis of Heterophyllin B in
    Zheng W; Zhou T; Li J; Jiang W; Zhang J; Xiao C; Wei D; Yang C; Xu R; Gong A; Zhang C; Bi Y
    Front Plant Sci; 2019; 10():1259. PubMed ID: 31749814
    [TBL] [Abstract][Full Text] [Related]  

  • 54. RiPPMiner: a bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links.
    Agrawal P; Khater S; Gupta M; Sain N; Mohanty D
    Nucleic Acids Res; 2017 Jul; 45(W1):W80-W88. PubMed ID: 28499008
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Insights into post-translational modification enzymes from RiPPs: A toolkit for applications in peptide synthesis.
    Rodríguez V
    Biotechnol Adv; 2022; 56():107908. PubMed ID: 35032597
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era.
    Hetrick KJ; van der Donk WA
    Curr Opin Chem Biol; 2017 Jun; 38():36-44. PubMed ID: 28260651
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Botanical Briefs: Australian Stinging Tree (Dendrocnide moroides).
    DeVore AC; McGovern TW
    Cutis; 2023 Nov; 112(5):250-252. PubMed ID: 38091432
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Unveiling the Biosynthetic Pathway of the Ribosomally Synthesized and Post-translationally Modified Peptide Ustiloxin B in Filamentous Fungi.
    Ye Y; Minami A; Igarashi Y; Izumikawa M; Umemura M; Nagano N; Machida M; Kawahara T; Shin-Ya K; Gomi K; Oikawa H
    Angew Chem Int Ed Engl; 2016 Jul; 55(28):8072-5. PubMed ID: 27166860
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thiopeptide biosynthesis featuring ribosomally synthesized precursor peptides and conserved posttranslational modifications.
    Liao R; Duan L; Lei C; Pan H; Ding Y; Zhang Q; Chen D; Shen B; Yu Y; Liu W
    Chem Biol; 2009 Feb; 16(2):141-7. PubMed ID: 19246004
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bromotryptophans and their incorporation in cyclic and bicyclic privileged peptides.
    García-Pindado J; Willemse T; Goss R; Maes BUW; Giralt E; Ballet S; Teixidó M
    Biopolymers; 2018 Aug; 109(10):e23112. PubMed ID: 29528113
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.