BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 35438986)

  • 1. Identifying Luminol Electrochemiluminescence at the Cathode via Single-Atom Catalysts Tuned Oxygen Reduction Reaction.
    Xia H; Zheng X; Li J; Wang L; Xue Y; Peng C; Han Y; Wang Y; Guo S; Wang J; Wang E
    J Am Chem Soc; 2022 May; 144(17):7741-7749. PubMed ID: 35438986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-Atom Iron Enables Strong Low-Triggering-Potential Luminol Cathodic Electrochemiluminescence.
    Gu W; Wang X; Xi M; Wei X; Jiao L; Qin Y; Huang J; Cui X; Zheng L; Hu L; Zhu C
    Anal Chem; 2022 Jul; 94(26):9459-9465. PubMed ID: 35734950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating Oxygen Reduction Behaviors on Nickel Single-Atom Catalysts to Probe the Electrochemiluminescence Mechanism at the Atomic Level.
    Gu W; Wang X; Wen J; Cao S; Jiao L; Wu Y; Wei X; Zheng L; Hu L; Zhang L; Zhu C
    Anal Chem; 2021 Jun; 93(24):8663-8670. PubMed ID: 34100585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of oxidized acetylene black by high-temperature calcination for luminol efficient cathodic electrochemiluminescence.
    Zhao C; Ma C; Zhang F; Lai W; Hong C; Qi Y
    J Colloid Interface Sci; 2023 Sep; 645():997-1004. PubMed ID: 37183158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-atom boosted electrochemiluminescence via phosphorus doping of Fe-N/P-C catalysts.
    Yang YX; He QN; Xu CH; Javed R; Zhao H; Ye D; Zhao W
    Anal Chim Acta; 2023 May; 1254():341091. PubMed ID: 37005019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fe-single-atom catalysts boosting electrochemiluminescence via bipolar electrode integrated with its peroxidase-like activity for bioanalysis.
    Chen X; Xv H; Li C; Kong L; Li C; Li F
    Biosens Bioelectron; 2024 Aug; 258():116351. PubMed ID: 38705074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ag-O-Co Interface Modulation-Amplified Luminol Cathodic Electrogenerated Chemiluminescence.
    Zou R; Xie R; Peng Y; Guan W; Lin Y; Lu C
    Anal Chem; 2022 Mar; 94(11):4813-4820. PubMed ID: 35274939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired Single-Atom Sites Enable Efficient Oxygen Activation for Switching Anodic/Cathodic Electrochemiluminescence.
    Xu W; Wu Y; Wang X; Qin Y; Wang H; Luo Z; Wen J; Hu L; Gu W; Zhu C
    Angew Chem Int Ed Engl; 2023 Jul; 62(29):e202304625. PubMed ID: 37083028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-atom iron boosts electrochemiluminescence for ultrasensitive carcinoembryonic antigen detection.
    Huang X; Deng H; Deng X; Li L; Wu M; Huang C; Zhang Y; Zhao H
    Mikrochim Acta; 2024 Jan; 191(2):111. PubMed ID: 38252316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Carbonate-Involved Amplification Strategy for Cathodic Electrochemiluminescence of Luminol Triggered by the Catalase-like CoO Nanorods.
    Xu Z; Zhou Y; Li M; Guo Z; Zheng X
    Anal Chem; 2023 Jul; 95(27):10457-10463. PubMed ID: 37385957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elevating sensing capability via dual-atom catalysts boosted luminol cathodic electrochemiluminescence.
    Kong YC; Wang DL; Zhang JJ; Yang YX; Xu CH; Javed R; Zhao H; Ye D; Zhao W
    Anal Chim Acta; 2024 Mar; 1295():342322. PubMed ID: 38355223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal sensing platform based on anodic dissolution of Ag and cathodic biocatalysis of oxygen reduction for Staphylococcus aureus detection.
    Chen B; Tao Q; Qiao F; Fei Y; Liu Y; Xiong X; Liu S
    Food Chem; 2022 Jul; 383():132404. PubMed ID: 35168048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cathodic electrochemiluminescence of L012 and its application in antioxidant detection.
    Tan M; Wang Y; Hong Z; Zhou P; Jiang J; Su B
    Analyst; 2024 Feb; 149(5):1496-1501. PubMed ID: 38315553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmon-Boosted Fe, Co Dual Single-Atom Catalysts for Ultrasensitive Luminol-Dissolved O
    Bushira FA; Wang P; Wang Y; Hou S; Diao X; Li H; Zheng L; Jin Y
    Anal Chem; 2022 Jul; 94(27):9758-9765. PubMed ID: 35749700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boosting Electrochemiluminescence Performance of a Dual-Active Site Iron Single-Atom Catalyst-Based Luminol-Dissolved Oxygen System via Plasmon-Induced Hot Holes.
    Bushira FA; Hussain A; Wang P; Li H; Zheng L; Gao Z; Dong H; Jin Y
    Anal Chem; 2024 Jun; 96(23):9704-9712. PubMed ID: 38819721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amplified cathodic electrochemiluminescence of luminol based on Pd and Pt nanoparticles and glucose oxidase decorated graphene as trace label for ultrasensitive detection of protein.
    Cao Y; Yuan R; Chai Y; Liu H; Liao Y; Zhuo Y
    Talanta; 2013 Sep; 113():106-12. PubMed ID: 23708630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Supply of H
    Li X; Du Y; Wang H; Ma H; Wu D; Ren X; Wei Q; Xu JJ
    Anal Chem; 2020 Sep; 92(18):12693-12699. PubMed ID: 32808521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Entropy Oxide for Highly Efficient Luminol-Dissolved Oxygen Electrochemiluminescence and Biosensing Applications.
    Bushira FA; Wang P; Jin Y
    Anal Chem; 2022 Feb; 94(6):2958-2965. PubMed ID: 35099931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zirconium-Metalloporphyrin Frameworks-Luminol Competitive Electrochemiluminescence for Ratiometric Detection of Polynucleotide Kinase Activity.
    Zhang G; Chai H; Tian M; Zhu S; Qu L; Zhang X
    Anal Chem; 2020 May; 92(10):7354-7362. PubMed ID: 32319281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection.
    Xu S; Liu Y; Wang T; Li J
    Anal Chem; 2011 May; 83(10):3817-23. PubMed ID: 21513282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.