These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 35439509)
21. Facile green synthesis of silver nanoparticles using seed aqueous extract of Pistacia atlantica and its antibacterial activity. Sadeghi B; Rostami A; Momeni SS Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 134():326-32. PubMed ID: 25022505 [TBL] [Abstract][Full Text] [Related]
22. Green synthesis of water-soluble nontoxic inorganic polymer nanocomposites containing silver nanoparticles using white tea extract and assessment of their in vitro antioxidant and cytotoxicity activities. Haghparasti Z; Mahdavi Shahri M Mater Sci Eng C Mater Biol Appl; 2018 Jun; 87():139-148. PubMed ID: 29549943 [TBL] [Abstract][Full Text] [Related]
23. Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. Aygün A; Özdemir S; Gülcan M; Cellat K; Şen F J Pharm Biomed Anal; 2020 Jan; 178():112970. PubMed ID: 31722822 [TBL] [Abstract][Full Text] [Related]
27. Developmental and reproductive toxicity of PVP/PEI-coated silver nanoparticles to zebrafish. Orbea A; González-Soto N; Lacave JM; Barrio I; Cajaraville MP Comp Biochem Physiol C Toxicol Pharmacol; 2017 Sep; 199():59-68. PubMed ID: 28274763 [TBL] [Abstract][Full Text] [Related]
28. "Miswak" Based Green Synthesis of Silver Nanoparticles: Evaluation and Comparison of Their Microbicidal Activities with the Chemical Synthesis. Shaik MR; Albalawi GH; Khan ST; Khan M; Adil SF; Kuniyil M; Al-Warthan A; Siddiqui MR; Alkhathlan HZ; Khan M Molecules; 2016 Nov; 21(11):. PubMed ID: 27827968 [TBL] [Abstract][Full Text] [Related]
29. Comparation of the phytotoxicity between chemically and green synthesized silver nanoparticles. Zhang H; Chen S; Jia X; Huang Y; Ji R; Zhao L Sci Total Environ; 2021 Jan; 752():142264. PubMed ID: 33207511 [TBL] [Abstract][Full Text] [Related]
30. Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Veerakumar K; Govindarajan M Parasitol Res; 2014 Nov; 113(11):4085-96. PubMed ID: 25146645 [TBL] [Abstract][Full Text] [Related]
31. In vitro evaluation of acaricidal activity of novel green silver nanoparticles against deltamethrin resistance Rhipicephalus (Boophilus) microplus. Avinash B; Venu R; Alpha Raj M; Srinivasa Rao K; Srilatha C; Prasad TN Vet Parasitol; 2017 Apr; 237():130-136. PubMed ID: 28246003 [TBL] [Abstract][Full Text] [Related]
32. Green Synthesis of Gold and Silver Nanoparticles Using Leaf Extract of Khan SA; Shahid S; Lee CS Biomolecules; 2020 May; 10(6):. PubMed ID: 32486004 [TBL] [Abstract][Full Text] [Related]
33. Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction. Muthu K; Priya S Spectrochim Acta A Mol Biomol Spectrosc; 2017 May; 179():66-72. PubMed ID: 28219038 [TBL] [Abstract][Full Text] [Related]
34. Facile biosynthesis of silver nanoparticles using Barleria cristata: mosquitocidal potential and biotoxicity on three non-target aquatic organisms. Govindarajan M; Benelli G Parasitol Res; 2016 Mar; 115(3):925-35. PubMed ID: 26555876 [TBL] [Abstract][Full Text] [Related]
35. High-Content Imaging and Gene Expression Approaches To Unravel the Effect of Surface Functionality on Cellular Interactions of Silver Nanoparticles. Manshian BB; Pfeiffer C; Pelaz B; Heimerl T; Gallego M; Möller M; del Pino P; Himmelreich U; Parak WJ; Soenen SJ ACS Nano; 2015 Oct; 9(10):10431-44. PubMed ID: 26327399 [TBL] [Abstract][Full Text] [Related]
36. Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Ahamed M; Posgai R; Gorey TJ; Nielsen M; Hussain SM; Rowe JJ Toxicol Appl Pharmacol; 2010 Feb; 242(3):263-9. PubMed ID: 19874832 [TBL] [Abstract][Full Text] [Related]
37. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Sundaravadivelan C; Padmanabhan MN Environ Sci Pollut Res Int; 2014 Mar; 21(6):4624-33. PubMed ID: 24352539 [TBL] [Abstract][Full Text] [Related]
38. Biosynthesized silver nanoparticles from Pedilanthus tithymaloides leaf extract with anti-developmental activity against larval instars of Aedes aegypti L. (Diptera; Culicidae). Sundaravadivelan C; Nalini Padmanabhan M; Sivaprasath P; Kishmu L Parasitol Res; 2013 Jan; 112(1):303-11. PubMed ID: 23052770 [TBL] [Abstract][Full Text] [Related]
39. High-value utilization of egg shell to synthesize Silver and Gold-Silver core shell nanoparticles and their application for the degradation of hazardous dyes from aqueous phase-A green approach. Sinha T; Ahmaruzzaman M J Colloid Interface Sci; 2015 Sep; 453():115-131. PubMed ID: 25978558 [TBL] [Abstract][Full Text] [Related]
40. Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Arjunan NK; Murugan K; Rejeeth C; Madhiyazhagan P; Barnard DR Vector Borne Zoonotic Dis; 2012 Mar; 12(3):262-8. PubMed ID: 22022807 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]