BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35439593)

  • 1. Role of iron in gene expression and in the modulation of copper uptake in a freshwater alga: Insights on Cu and Fe assimilation pathways.
    Kochoni E; Doose C; Gonzalez P; Fortin C
    Environ Pollut; 2022 Jul; 305():119311. PubMed ID: 35439593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper-dependent iron assimilation pathway in the model photosynthetic eukaryote Chlamydomonas reinhardtii.
    La Fontaine S; Quinn JM; Nakamoto SS; Page MD; Göhre V; Moseley JL; Kropat J; Merchant S
    Eukaryot Cell; 2002 Oct; 1(5):736-57. PubMed ID: 12455693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron Modulation of Copper Uptake and Toxicity in a Green Alga ( Chlamydomonas reinhardtii).
    Kochoni E; Fortin C
    Environ Sci Technol; 2019 Jun; 53(11):6539-6545. PubMed ID: 31082264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights in copper handling strategies in the green alga Chlamydomonas reinhardtii under low-iron condition.
    Kochoni E; Aharchaou I; Ohlund L; Rosabal M; Sleno L; Fortin C
    Metallomics; 2022 Jun; 14(6):. PubMed ID: 35524697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The involvement of a multicopper oxidase in iron uptake by the green algae Chlamydomonas reinhardtii.
    Herbik A; Bölling C; Buckhout TJ
    Plant Physiol; 2002 Dec; 130(4):2039-48. PubMed ID: 12481087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the high-affinity iron uptake system at the Chlamydomonas reinhardtii plasma membrane.
    Terzulli A; Kosman DJ
    Eukaryot Cell; 2010 May; 9(5):815-26. PubMed ID: 20348389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Cu and pb on Ni bioaccumulation by Chlamydomonas reinhardtii: Validation of the biotic ligand model in binary metal Mixtures.
    Flouty R; Khalaf G
    Ecotoxicol Environ Saf; 2015 Mar; 113():79-86. PubMed ID: 25483376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CrGNAT gene regulates excess copper accumulation and tolerance in Chlamydomonas reinhardtii.
    Wang Y; Cheng ZZ; Chen X; Zheng Q; Yang ZM
    Plant Sci; 2015 Nov; 240():120-9. PubMed ID: 26475193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lead (Pb) and copper (Cu) share a common uptake transporter in the unicellular alga Chlamydomonas reinhardtii.
    Sánchez-Marín P; Fortin C; Campbell PG
    Biometals; 2014 Feb; 27(1):173-81. PubMed ID: 24442517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: a comparative study.
    Flouty R; Estephane G
    J Environ Manage; 2012 Nov; 111():106-14. PubMed ID: 22835654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of the biotic ligand model in metal mixtures: bioaccumulation of lead and copper.
    Chen Z; Zhu L; Wilkinson KJ
    Environ Sci Technol; 2010 May; 44(9):3580-6. PubMed ID: 20384345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FEA1, FEA2, and FRE1, encoding two homologous secreted proteins and a candidate ferrireductase, are expressed coordinately with FOX1 and FTR1 in iron-deficient Chlamydomonas reinhardtii.
    Allen MD; del Campo JA; Kropat J; Merchant SS
    Eukaryot Cell; 2007 Oct; 6(10):1841-52. PubMed ID: 17660359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extending the biotic ligand model to account for positive and negative feedback interactions between cadmium and zinc in a freshwater alga.
    Lavoie M; Campbell PG; Fortin C
    Environ Sci Technol; 2012 Nov; 46(21):12129-36. PubMed ID: 23030358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of trace elements in the toxicity of copper to
    Chen H; Shen X; Ying Y; Li X; Chen L; Shen C; Wen Y
    Environ Sci Process Impacts; 2022 Apr; 24(4):576-585. PubMed ID: 35266473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of essential elements on cadmium uptake and toxicity in a unicellular green alga: the protective effect of trace zinc and cobalt concentrations.
    Lavoie M; Fortin C; Campbell PG
    Environ Toxicol Chem; 2012 Jul; 31(7):1445-52. PubMed ID: 22544654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular Biotransformation of Cu(II)/Cu(I) Explained High Cu Toxicity to Phytoplankton
    Wang X; Wang WX
    Environ Sci Technol; 2021 Nov; 55(21):14772-14781. PubMed ID: 34647741
    [TBL] [Abstract][Full Text] [Related]  

  • 17. pH modulates transport rates of manganese and cadmium in the green alga Chlamydomonas reinhardtii through non-competitive interactions: implications for an algal BLM.
    François L; Fortin C; Campbell PG
    Aquat Toxicol; 2007 Aug; 84(2):123-32. PubMed ID: 17651821
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal stoichiometry in predicting Cd and Cu toxicity to a freshwater green alga Chlamydomonas reinhardtii.
    Wang WX; Dei RC
    Environ Pollut; 2006 Jul; 142(2):303-12. PubMed ID: 16310914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of iron and copper uptake by iron, copper and zinc.
    Arredondo M; Martínez R; Núñez MT; Ruz M; Olivares M
    Biol Res; 2006; 39(1):95-102. PubMed ID: 16629169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A ferroxidase encoded by FOX1 contributes to iron assimilation under conditions of poor iron nutrition in Chlamydomonas.
    Chen JC; Hsieh SI; Kropat J; Merchant SS
    Eukaryot Cell; 2008 Mar; 7(3):541-5. PubMed ID: 18245275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.