These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
546 related articles for article (PubMed ID: 35439946)
1. Machine learning-based multiparametric MRI radiomics for predicting poor responders after neoadjuvant chemoradiotherapy in rectal Cancer patients. Wang J; Chen J; Zhou R; Gao Y; Li J BMC Cancer; 2022 Apr; 22(1):420. PubMed ID: 35439946 [TBL] [Abstract][Full Text] [Related]
2. Development and validation of an MRI-based radiomic nomogram to distinguish between good and poor responders in patients with locally advanced rectal cancer undergoing neoadjuvant chemoradiotherapy. Wang J; Liu X; Hu B; Gao Y; Chen J; Li J Abdom Radiol (NY); 2021 May; 46(5):1805-1815. PubMed ID: 33151359 [TBL] [Abstract][Full Text] [Related]
3. Evaluating treatment response to neoadjuvant chemoradiotherapy in rectal cancer using various MRI-based radiomics models. Li Z; Ma X; Shen F; Lu H; Xia Y; Lu J BMC Med Imaging; 2021 Feb; 21(1):30. PubMed ID: 33593304 [TBL] [Abstract][Full Text] [Related]
4. Radiomics analysis of multiparametric MRI for prediction of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Cui Y; Yang X; Shi Z; Yang Z; Du X; Zhao Z; Cheng X Eur Radiol; 2019 Mar; 29(3):1211-1220. PubMed ID: 30128616 [TBL] [Abstract][Full Text] [Related]
5. Radiomics signature as a new biomarker for preoperative prediction of neoadjuvant chemoradiotherapy response in locally advanced rectal cancer. Zhang Z; Jiang X; Zhang R; Yu T; Liu S; Luo Y Diagn Interv Radiol; 2021 May; 27(3):308-314. PubMed ID: 34003118 [TBL] [Abstract][Full Text] [Related]
6. Radiomics of locally advanced rectal cancer: machine learning-based prediction of response to neoadjuvant chemoradiotherapy using pre-treatment sagittal T2-weighted MRI. Yardimci AH; Kocak B; Sel I; Bulut H; Bektas CT; Cin M; Dursun N; Bektas H; Mermut O; Yardimci VH; Kilickesmez O Jpn J Radiol; 2023 Jan; 41(1):71-82. PubMed ID: 35962933 [TBL] [Abstract][Full Text] [Related]
7. Attention mechanism based multi-sequence MRI fusion improves prediction of response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Zhou X; Yu Y; Feng Y; Ding G; Liu P; Liu L; Ren W; Zhu Y; Cao W Radiat Oncol; 2023 Oct; 18(1):175. PubMed ID: 37891611 [TBL] [Abstract][Full Text] [Related]
8. Multiparametric MRI-based radiomic model for predicting lymph node metastasis after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Wei Q; Chen L; Hou X; Lin Y; Xie R; Yu X; Zhang H; Wen Z; Wu Y; Liu X; Chen W Insights Imaging; 2024 Jun; 15(1):163. PubMed ID: 38922456 [TBL] [Abstract][Full Text] [Related]
9. Multimodality radiomics prediction of radiotherapy-induced the early proctitis and cystitis in rectal cancer patients: a machine learning study. Abbaspour S; Barahman M; Abdollahi H; Arabalibeik H; Hajainfar G; Babaei M; Iraji H; Barzegartahamtan M; Ay MR; Mahdavi SR Biomed Phys Eng Express; 2023 Dec; 10(1):. PubMed ID: 37995359 [No Abstract] [Full Text] [Related]
10. MRI-based radiomics to predict response in locally advanced rectal cancer: comparison of manual and automatic segmentation on external validation in a multicentre study. Defeudis A; Mazzetti S; Panic J; Micilotta M; Vassallo L; Giannetto G; Gatti M; Faletti R; Cirillo S; Regge D; Giannini V Eur Radiol Exp; 2022 May; 6(1):19. PubMed ID: 35501512 [TBL] [Abstract][Full Text] [Related]
11. Multiparametric MRI-based Radiomics approaches on predicting response to neoadjuvant chemoradiotherapy (nCRT) in patients with rectal cancer. Cheng Y; Luo Y; Hu Y; Zhang Z; Wang X; Yu Q; Liu G; Cui E; Yu T; Jiang X Abdom Radiol (NY); 2021 Nov; 46(11):5072-5085. PubMed ID: 34302510 [TBL] [Abstract][Full Text] [Related]
12. Prediction of locally advanced rectal cancer response to neoadjuvant chemoradiation therapy using volumetric multiparametric MRI-based radiomics. El Homsi M; Bane O; Fauveau V; Hectors S; Vietti Violi N; Sylla P; Ko HB; Cuevas J; Carbonell G; Nehlsen A; Vanguri R; Viswanath S; Jambawalikar S; Shaish H; Taouli B Abdom Radiol (NY); 2024 Mar; 49(3):791-800. PubMed ID: 38150143 [TBL] [Abstract][Full Text] [Related]
13. External validation and comparison of MR-based radiomics models for predicting pathological complete response in locally advanced rectal cancer: a two-centre, multi-vendor study. Wei Q; Chen Z; Tang Y; Chen W; Zhong L; Mao L; Hu S; Wu Y; Deng K; Yang W; Liu X Eur Radiol; 2023 Mar; 33(3):1906-1917. PubMed ID: 36355199 [TBL] [Abstract][Full Text] [Related]
14. MRI-based delta-radiomics are predictive of pathological complete response after neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Wan L; Peng W; Zou S; Ye F; Geng Y; Ouyang H; Zhao X; Zhang H Acad Radiol; 2021 Nov; 28 Suppl 1():S95-S104. PubMed ID: 33189550 [TBL] [Abstract][Full Text] [Related]
15. [A prediction model of pathological complete response in patients with locally advanced rectal cancer after PD-1 antibody combined with total neoadjuvant chemoradiotherapy based on MRI radiomics]. Zhang XY; Zhu HT; Li XT; Li YJ; Li ZW; Wang WH; Wu AW; Sun YS; Zhang L Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Mar; 25(3):228-234. PubMed ID: 35340172 [No Abstract] [Full Text] [Related]
16. Endorectal ultrasound radiomics in locally advanced rectal cancer patients: despeckling and radiotherapy response prediction using machine learning. Abbaspour S; Abdollahi H; Arabalibeik H; Barahman M; Arefpour AM; Fadavi P; Ay M; Mahdavi SR Abdom Radiol (NY); 2022 Nov; 47(11):3645-3659. PubMed ID: 35951085 [TBL] [Abstract][Full Text] [Related]
17. Selecting Candidates for Organ-Preserving Strategies After Neoadjuvant Chemoradiotherapy for Rectal Cancer: Development and Validation of a Model Integrating MRI Radiomics and Pathomics. Wan L; Sun Z; Peng W; Wang S; Li J; Zhao Q; Wang S; Ouyang H; Zhao X; Zou S; Zhang H J Magn Reson Imaging; 2022 Oct; 56(4):1130-1142. PubMed ID: 35142001 [TBL] [Abstract][Full Text] [Related]
18. Develop and validate a radiomics space-time model to predict the pathological complete response in patients undergoing neoadjuvant treatment of rectal cancer: an artificial intelligence model study based on machine learning. Peng J; Wang W; Jin H; Qin X; Hou J; Yang Z; Shu Z BMC Cancer; 2023 Apr; 23(1):365. PubMed ID: 37085830 [TBL] [Abstract][Full Text] [Related]
19. Machine learning in predicting pathological complete response to neoadjuvant chemoradiotherapy in rectal cancer using MRI: a systematic review and meta-analysis. He J; Wang SX; Liu P Br J Radiol; 2024 Jun; 97(1159):1243-1254. PubMed ID: 38730550 [TBL] [Abstract][Full Text] [Related]
20. Machine learning-based response assessment in patients with rectal cancer after neoadjuvant chemoradiotherapy: radiomics analysis for assessing tumor regression grade using T2-weighted magnetic resonance images. Lee YD; Kim HG; Seo M; Moon SK; Park SJ; You MW Int J Colorectal Dis; 2024 May; 39(1):78. PubMed ID: 38789861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]