These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 35440084)
1. Efficient D-allulose synthesis under acidic conditions by auto-inducing expression of the tandem D-allulose 3-epimerase genes in Bacillus subtilis. Hu M; Wei Y; Zhang R; Shao M; Yang T; Xu M; Zhang X; Rao Z Microb Cell Fact; 2022 Apr; 21(1):63. PubMed ID: 35440084 [TBL] [Abstract][Full Text] [Related]
2. Fine-Tuning of Carbon Flux and Artificial Promoters in Zhang W; Wei M; Sun X; Lu F; Guan L; Mao S; Qin HM J Agric Food Chem; 2022 Nov; 70(43):13935-13944. PubMed ID: 36278912 [TBL] [Abstract][Full Text] [Related]
3. Boosting the Heterologous Expression of d-Allulose 3-Epimerase in Liu Z; Wang Y; Liu S; Guo X; Zhao T; Wu J; Chen S J Agric Food Chem; 2022 Sep; 70(38):12128-12134. PubMed ID: 36099523 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of the d-Allulose 3-Epimerase Expression in Zhang W; Ren H; Chen J; Ni D; Xu W; Mu W J Agric Food Chem; 2024 Apr; 72(14):8052-8059. PubMed ID: 38563420 [TBL] [Abstract][Full Text] [Related]
5. A Novel d-Allulose 3-Epimerase Gene from the Metagenome of a Thermal Aquatic Habitat and d-Allulose Production by Bacillus subtilis Whole-Cell Catalysis. Patel SN; Kaushal G; Singh SP Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31862716 [TBL] [Abstract][Full Text] [Related]
6. Development of food-grade expression system for d-allulose 3-epimerase preparation with tandem isoenzyme genes in Corynebacterium glutamicum and its application in conversion of cane molasses to D-allulose. Yang J; Tian C; Zhang T; Ren C; Zhu Y; Zeng Y; Men Y; Sun Y; Ma Y Biotechnol Bioeng; 2019 Apr; 116(4):745-756. PubMed ID: 30597517 [TBL] [Abstract][Full Text] [Related]
7. Production of d-allulose from d-glucose by Escherichia coli transformant cells co-expressing d-glucose isomerase and d-psicose 3-epimerase genes. Zhang W; Li H; Jiang B; Zhang T; Mu W J Sci Food Agric; 2017 Aug; 97(10):3420-3426. PubMed ID: 28009059 [TBL] [Abstract][Full Text] [Related]
8. Construction of a Food Grade Recombinant Bacillus subtilis Based on Replicative Plasmids with an Auxotrophic Marker for Biotransformation of d-Fructose to d-Allulose. He W; Mu W; Jiang B; Yan X; Zhang T J Agric Food Chem; 2016 Apr; 64(16):3243-50. PubMed ID: 27056339 [TBL] [Abstract][Full Text] [Related]
9. Engineering of Acid-Resistant d-Allulose 3-Epimerase for Functional Juice Production. Li L; Zhang Q; Wang T; Qi H; Wei M; Lu F; Guan L; Mao S; Qin HM J Agric Food Chem; 2022 Dec; 70(51):16298-16306. PubMed ID: 36515366 [TBL] [Abstract][Full Text] [Related]
10. Production of d-Allulose with d-Psicose 3-Epimerase Expressed and Displayed on the Surface of Bacillus subtilis Spores. He W; Jiang B; Mu W; Zhang T J Agric Food Chem; 2016 Sep; 64(38):7201-7. PubMed ID: 27598572 [TBL] [Abstract][Full Text] [Related]
11. Highly efficient production of Clostridium cellulolyticum H10 D-psicose 3-epimerase in Bacillus subtilis and use of these cells to produce D-psicose. Su L; Sun F; Liu Z; Zhang K; Wu J Microb Cell Fact; 2018 Nov; 17(1):188. PubMed ID: 30486886 [TBL] [Abstract][Full Text] [Related]
12. Semi-rational engineering of D-allulose 3-epimerase for simultaneously improving the catalytic activity and thermostability based on D-allulose biosensor. Li Z; Hu Y; Yu C; Fei K; Shen L; Liu Y; Nakanishi H Biotechnol J; 2024 Aug; 19(8):e2400280. PubMed ID: 39167550 [TBL] [Abstract][Full Text] [Related]
13. Food-Grade Expression of d-Psicose 3-Epimerase with Tandem Repeat Genes in Bacillus subtilis. He W; Mu W; Jiang B; Yan X; Zhang T J Agric Food Chem; 2016 Jul; 64(28):5701-7. PubMed ID: 27358033 [TBL] [Abstract][Full Text] [Related]
15. High production of d-psicose from d-fructose by immobilized whole recombinant Bacillus subtilis cells expressing d-psicose 3-epimerase from Agrobacterium tumefaciens. Wang J; Sun J; Qi H; Wang L; Wang J; Li C Biotechnol Appl Biochem; 2022 Feb; 69(1):364-375. PubMed ID: 33533517 [TBL] [Abstract][Full Text] [Related]
16. Identification of hyperthermophilic D-allulose 3-epimerase from Thermotoga sp. and its application as a high-performance biocatalyst for D-allulose synthesis. Shen JD; Xu BP; Yu TL; Fei YX; Cai X; Huang LG; Jin LQ; Liu ZQ; Zheng YG Bioprocess Biosyst Eng; 2024 Jun; 47(6):841-850. PubMed ID: 38676737 [TBL] [Abstract][Full Text] [Related]
17. The Engineering, Expression, and Immobilization of Epimerases for Tan JH; Chen A; Bi J; Lim YH; Wong FT; Ow DS Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628886 [TBL] [Abstract][Full Text] [Related]
18. Thermostability Improvement of the d-Allulose 3-Epimerase from Dorea sp. CAG317 by Site-Directed Mutagenesis at the Interface Regions. Zhang W; Zhang Y; Huang J; Chen Z; Zhang T; Guang C; Mu W J Agric Food Chem; 2018 Jun; 66(22):5593-5601. PubMed ID: 29762031 [TBL] [Abstract][Full Text] [Related]
19. Enhancing the thermostability of D-allulose 3-epimerase from Clostridium cellulolyticum H10 via a dual-enzyme screening system. Feng Y; Pu Z; Zhu L; Wu M; Yang L; Yu H; Lin J Enzyme Microb Technol; 2022 Sep; 159():110054. PubMed ID: 35526470 [TBL] [Abstract][Full Text] [Related]
20. Enhanced production of d-psicose 3-epimerase in Bacillus subtilis by regulation of segmented fermentation. Fu G; Zhang S; Dong H; Chen J; Tu R; Zhang D Biotechnol Appl Biochem; 2020 Sep; 67(5):812-818. PubMed ID: 31589779 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]