These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 35440549)

  • 1. Microwave-to-optical conversion with a gallium phosphide photonic crystal cavity.
    Hönl S; Popoff Y; Caimi D; Beccari A; Kippenberg TJ; Seidler P
    Nat Commun; 2022 Apr; 13(1):2065. PubMed ID: 35440549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bidirectional microwave-optical transduction based on integration of high-overtone bulk acoustic resonators and photonic circuits.
    Blésin T; Kao W; Siddharth A; Wang RN; Attanasio A; Tian H; Bhave SA; Kippenberg TJ
    Nat Commun; 2024 Jul; 15(1):6096. PubMed ID: 39030168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optomechanical ring resonator for efficient microwave-optical frequency conversion.
    Chen IT; Li B; Lee S; Chakravarthi S; Fu KM; Li M
    Nat Commun; 2023 Nov; 14(1):7594. PubMed ID: 37990000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of an ultra-low mode volume piezo-optomechanical quantum transducer.
    Chiappina P; Banker J; Meesala S; Lake D; Wood S; Painter O
    Opt Express; 2023 Jul; 31(14):22914-22927. PubMed ID: 37475390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cavity piezo-mechanics for superconducting-nanophotonic quantum interface.
    Han X; Fu W; Zhong C; Zou CL; Xu Y; Sayem AA; Xu M; Wang S; Cheng R; Jiang L; Tang HX
    Nat Commun; 2020 Jun; 11(1):3237. PubMed ID: 32591510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wavelength transduction from a 3D microwave cavity to telecom using piezoelectric optomechanical crystals.
    Ramp H; Clark TJ; Hauer BD; Doolin CD; Balram KC; Srinivasan K; Davis JP
    Appl Phys Lett; 2020; 116(17):. PubMed ID: 34815582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultra-low-noise microwave to optics conversion in gallium phosphide.
    Stockill R; Forsch M; Hijazi F; Beaudoin G; Pantzas K; Sagnes I; Braive R; Gröblacher S
    Nat Commun; 2022 Nov; 13(1):6583. PubMed ID: 36323690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superconducting qubit to optical photon transduction.
    Mirhosseini M; Sipahigil A; Kalaee M; Painter O
    Nature; 2020 Dec; 588(7839):599-603. PubMed ID: 33361793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gallium Phosphide as a Piezoelectric Platform for Quantum Optomechanics.
    Stockill R; Forsch M; Beaudoin G; Pantzas K; Sagnes I; Braive R; Gröblacher S
    Phys Rev Lett; 2019 Oct; 123(16):163602. PubMed ID: 31702356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Converting microwave and telecom photons with a silicon photonic nanomechanical interface.
    Arnold G; Wulf M; Barzanjeh S; Redchenko ES; Rueda A; Hease WJ; Hassani F; Fink JM
    Nat Commun; 2020 Sep; 11(1):4460. PubMed ID: 32901014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong optomechanical coupling in a slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio.
    Schneider K; Seidler P
    Opt Express; 2016 Jun; 24(13):13850-65. PubMed ID: 27410548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissipative optomechanics in high-frequency nanomechanical resonators.
    Primo AG; Pinho PV; Benevides R; Gröblacher S; Wiederhecker GS; Alegre TPM
    Nat Commun; 2023 Sep; 14(1):5793. PubMed ID: 37723162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional phononic-photonic band gap optomechanical crystal cavity.
    Safavi-Naeini AH; Hill JT; Meenehan S; Chan J; Gröblacher S; Painter O
    Phys Rev Lett; 2014 Apr; 112(15):153603. PubMed ID: 24785039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of tunable GHz-frequency optomechanical crystal resonators.
    Pfeifer H; Paraïso T; Zang L; Painter O
    Opt Express; 2016 May; 24(11):11407-19. PubMed ID: 27410069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrahigh-Q optomechanical crystal cavities fabricated in a CMOS foundry.
    Benevides R; Santos FGS; Luiz GO; Wiederhecker GS; Alegre TPM
    Sci Rep; 2017 May; 7(1):2491. PubMed ID: 28559585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrically interfaced Brillouin-active waveguide for microwave photonic measurements.
    Zhou Y; Ruesink F; Pavlovich M; Behunin R; Cheng H; Gertler S; Starbuck AL; Leenheer AJ; Pomerene AT; Trotter DC; Musick KM; Gehl M; Kodigala A; Eichenfield M; Lentine AL; Otterstrom N; Rakich P
    Nat Commun; 2024 Aug; 15(1):6796. PubMed ID: 39122672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Integration of Silicon Photonic Devices on Lithium Niobate for Optomechanical Wavelength Conversion.
    Marinković I; Drimmer M; Hensen B; Gröblacher S
    Nano Lett; 2021 Jan; 21(1):529-535. PubMed ID: 33393311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superconducting cavity electro-optics: A platform for coherent photon conversion between superconducting and photonic circuits.
    Fan L; Zou CL; Cheng R; Guo X; Han X; Gong Z; Wang S; Tang HX
    Sci Adv; 2018 Aug; 4(8):eaar4994. PubMed ID: 30128351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave-to-optical transduction with erbium ions coupled to planar photonic and superconducting resonators.
    Rochman J; Xie T; Bartholomew JG; Schwab KC; Faraon A
    Nat Commun; 2023 Mar; 14(1):1153. PubMed ID: 36859486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-Hz Closed-Loop Electro-Optomechanical Oscillator with Gallium Phosphide Photonic Crystal Integrated on SoI Circuitry.
    Horváth R; Modica G; Ghorbel I; Beaudoin G; Pantzas K; Sagnes I; Martin A; De Rossi A; Combrié S; Braive R
    ACS Photonics; 2023 Aug; 10(8):2540-2548. PubMed ID: 37602296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.