These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 35440560)
21. Increasing Salt Marsh Elevation Using Sediment Augmentation: Critical Insights from Surface Sediments and Sediment Cores. Fard E; Brown LN; Ambrose RF; Whitcraft C; Thorne KM; Kemnitz NJ; Hammond DE; MacDonald GM Environ Manage; 2024 Mar; 73(3):614-633. PubMed ID: 37910218 [TBL] [Abstract][Full Text] [Related]
22. Hazardous and contaminated sites within salt marsh migration corridors in Rhode Island, USA. Burman E; Mulvaney K; Merrill N; Bradley M; Wigand C J Environ Manage; 2023 Apr; 331():117218. PubMed ID: 36640648 [TBL] [Abstract][Full Text] [Related]
23. Mangrove growth response to experimental warming is greatest near the range limit in northeast Florida. Chapman SK; Feller IC; Canas G; Hayes MA; Dix N; Hester M; Morris J; Langley JA Ecology; 2021 Jun; 102(6):e03320. PubMed ID: 33665838 [TBL] [Abstract][Full Text] [Related]
24. Estimating mussel mound distribution and geometric properties in coastal salt marshes by using UAV-Lidar point clouds. Pinton D; Canestrelli A; Williams S; Angelini C; Wilkinson B Sci Total Environ; 2023 Jul; 883():163707. PubMed ID: 37105489 [TBL] [Abstract][Full Text] [Related]
25. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Osland MJ; Enwright N; Day RH; Doyle TW Glob Chang Biol; 2013 May; 19(5):1482-94. PubMed ID: 23504931 [TBL] [Abstract][Full Text] [Related]
26. Accelerated migration of mangroves indicate large-scale saltwater intrusion in Amazon coastal wetlands. Visschers LLB; Santos CD; Franco AMA Sci Total Environ; 2022 Aug; 836():155679. PubMed ID: 35523322 [TBL] [Abstract][Full Text] [Related]
27. Vegetation zones as indicators of denitrification potential in salt marshes. Ooi SK; Barry A; Lawrence BA; Elphick CS; Helton AM Ecol Appl; 2022 Sep; 32(6):e2630. PubMed ID: 35403778 [TBL] [Abstract][Full Text] [Related]
28. Depositional dynamics and vegetation succession in self-organizing processes of deltaic marshes. Hou W; Liang S; Sun Z; Ma Q; Hu X; Zhang R Sci Total Environ; 2024 Feb; 912():169402. PubMed ID: 38114033 [TBL] [Abstract][Full Text] [Related]
29. Wetland loss patterns and inundation-productivity relationships prognosticate widespread salt for southern New England. Watson EB; Wigand C; Davey EW; Andrews HM; Bishop J; Raposa KB Estuaries Coast; 2017 May; 40(3):662-681. PubMed ID: 30008627 [TBL] [Abstract][Full Text] [Related]
30. Efficient tidal channel networks alleviate the drought-induced die-off of salt marshes: Implications for coastal restoration and management. Liu Z; Fagherazzi S; She X; Ma X; Xie C; Cui B Sci Total Environ; 2020 Dec; 749():141493. PubMed ID: 32846349 [TBL] [Abstract][Full Text] [Related]
31. Mosquitoes associated with ditch-plugged and control tidal salt marshes on the Delmarva Peninsula. Leisnham PT; Sandoval-Mohapatra S Int J Environ Res Public Health; 2011 Aug; 8(8):3099-113. PubMed ID: 21909293 [TBL] [Abstract][Full Text] [Related]
32. Adaptive response of Dongzhaigang mangrove in China to future sea level rise. Cai R; Ding R; Yan X; Li C; Sun J; Tan H; Men W; Guo H; Wang C Sci Rep; 2022 Jul; 12(1):11495. PubMed ID: 35798782 [TBL] [Abstract][Full Text] [Related]
33. Field Experiments and Meta-analysis Reveal Wetland Vegetation as a Crucial Element in the Coastal Protection Paradigm. Silliman BR; He Q; Angelini C; Smith CS; Kirwan ML; Daleo P; Renzi JJ; Butler J; Osborne TZ; Nifong JC; van de Koppel J Curr Biol; 2019 Jun; 29(11):1800-1806.e3. PubMed ID: 31130456 [TBL] [Abstract][Full Text] [Related]
34. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone. Osland MJ; Day RH; Larriviere JC; From AS PLoS One; 2014; 9(6):e99604. PubMed ID: 24971938 [TBL] [Abstract][Full Text] [Related]
35. Modeling tidal marsh distribution with sea-level rise: evaluating the role of vegetation, sediment, and upland habitat in marsh resiliency. Schile LM; Callaway JC; Morris JT; Stralberg D; Parker VT; Kelly M PLoS One; 2014; 9(2):e88760. PubMed ID: 24551156 [TBL] [Abstract][Full Text] [Related]
37. Climate and plant controls on soil organic matter in coastal wetlands. Osland MJ; Gabler CA; Grace JB; Day RH; McCoy ML; McLeod JL; From AS; Enwright NM; Feher LC; Stagg CL; Hartley SB Glob Chang Biol; 2018 Nov; 24(11):5361-5379. PubMed ID: 29957880 [TBL] [Abstract][Full Text] [Related]
38. Controls on resilience and stability in a sediment-subsidized salt marsh. Stagg CL; Mendelssohn IA Ecol Appl; 2011 Jul; 21(5):1731-44. PubMed ID: 21830714 [TBL] [Abstract][Full Text] [Related]
39. Marsh migration and beyond: A scalable framework to assess tidal wetland resilience and support strategic management. Stevens RA; Shull S; Carter J; Bishop E; Herold N; Riley CA; Wasson K PLoS One; 2023; 18(11):e0293177. PubMed ID: 37930990 [TBL] [Abstract][Full Text] [Related]
40. Mangrove colonization on tidal flats causes straightened tidal channels and consequent changes in the hydrodynamic gradient and siltation potential. Lee KY; Shih SS; Huang ZZ J Environ Manage; 2022 Jul; 314():115058. PubMed ID: 35452881 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]