These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 35440575)

  • 1. Sea ice-air interactions amplify multidecadal variability in the North Atlantic and Arctic region.
    Deng J; Dai A
    Nat Commun; 2022 Apr; 13(1):2100. PubMed ID: 35440575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatio-temporal change and variability of Barents-Kara sea ice, in the Arctic: Ocean and atmospheric implications.
    Kumar A; Yadav J; Mohan R
    Sci Total Environ; 2021 Jan; 753():142046. PubMed ID: 32892004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale sea ice-Surface temperature variability linked to Atlantic meridional overturning circulation.
    Vaideanu P; Stepanek C; Dima M; Schrepfer J; Matos F; Ionita M; Lohmann G
    PLoS One; 2023; 18(8):e0290437. PubMed ID: 37647314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origins of Barents-Kara sea-ice interannual variability modulated by the Atlantic pathway of El Niño-Southern Oscillation.
    Luo B; Luo D; Ge Y; Dai A; Wang L; Simmonds I; Xiao C; Wu L; Yao Y
    Nat Commun; 2023 Feb; 14(1):585. PubMed ID: 36737448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability.
    Tokinaga H; Xie SP; Mukougawa H
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6227-6232. PubMed ID: 28559341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atmospheric forcing dominates winter Barents-Kara sea ice variability on interannual to decadal time scales.
    Liu Z; Risi C; Codron F; Jian Z; Wei Z; He X; Poulsen CJ; Wang Y; Chen D; Ma W; Cheng Y; Bowen GJ
    Proc Natl Acad Sci U S A; 2022 Sep; 119(36):e2120770119. PubMed ID: 36037334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice.
    Li X; Holland DM; Gerber EP; Yoo C
    Nature; 2014 Jan; 505(7484):538-42. PubMed ID: 24451542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Linkages between atmospheric blocking, sea ice export through Fram Strait and the Atlantic Meridional Overturning Circulation.
    Ionita M; Scholz P; Lohmann G; Dima M; Prange M
    Sci Rep; 2016 Sep; 6():32881. PubMed ID: 27619955
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The absence of an Atlantic imprint on the multidecadal variability of wintertime European temperature.
    Yamamoto A; Palter JB
    Nat Commun; 2016 Mar; 7():10930. PubMed ID: 26975331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural drivers of multidecadal Arctic sea ice variability over the last millennium.
    Halloran PR; Hall IR; Menary M; Reynolds DJ; Scourse JD; Screen JA; Bozzo A; Dunstone N; Phipps S; Schurer AP; Sueyoshi T; Zhou T; Garry F
    Sci Rep; 2020 Jan; 10(1):688. PubMed ID: 31959798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation.
    Yang Q; Dixon TH; Myers PG; Bonin J; Chambers D; van den Broeke MR; Ribergaard MH; Mortensen J
    Nat Commun; 2016 Jan; 7():10525. PubMed ID: 26796579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent autumn sea ice loss in the eastern Arctic enhanced by summer Asian-Pacific Oscillation.
    Zhou B; Song Z; Yin Z; Xu X; Sun B; Hsu P; Chen H
    Nat Commun; 2024 Mar; 15(1):2798. PubMed ID: 38555365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate.
    Liu W; Fedorov AV; Xie SP; Hu S
    Sci Adv; 2020 Jun; 6(26):eaaz4876. PubMed ID: 32637596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sea-ice retreat suggests re-organization of water mass transformation in the Nordic and Barents Seas.
    Moore GWK; Våge K; Renfrew IA; Pickart RS
    Nat Commun; 2022 Jan; 13(1):67. PubMed ID: 35013213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms for low-frequency variability of summer Arctic sea ice extent.
    Zhang R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4570-5. PubMed ID: 25825758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freshwater Flux Variability Lengthens the Period of the Low-Frequency AMOC Variability.
    Liu F; Lu J; Kwon YO; Frankignoul C; Luo Y
    Geophys Res Lett; 2022 Oct; 49(20):e2022GL100136. PubMed ID: 36582353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Arctic Amplification Began at the Mid-Brunhes Event ~400,000 years ago.
    Cronin TM; Dwyer GS; Caverly EK; Farmer J; DeNinno LH; Rodriguez-Lazaro J; Gemery L
    Sci Rep; 2017 Nov; 7(1):14475. PubMed ID: 29101399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stable Atlantic Meridional Overturning Circulation in a changing North Atlantic Ocean since the 1990s.
    Fu Y; Li F; Karstensen J; Wang C
    Sci Adv; 2020 Nov; 6(48):. PubMed ID: 33246958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years.
    Thornalley DJR; Oppo DW; Ortega P; Robson JI; Brierley CM; Davis R; Hall IR; Moffa-Sanchez P; Rose NL; Spooner PT; Yashayaev I; Keigwin LD
    Nature; 2018 Apr; 556(7700):227-230. PubMed ID: 29643484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of Arctic sea ice loss on mid-Holocene climate.
    Park HS; Kim SJ; Seo KH; Stewart AL; Kim SY; Son SW
    Nat Commun; 2018 Nov; 9(1):4571. PubMed ID: 30385755
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.