These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 35440595)

  • 41. An All-Silk-Derived Dual-Mode E-skin for Simultaneous Temperature-Pressure Detection.
    Wang C; Xia K; Zhang M; Jian M; Zhang Y
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39484-39492. PubMed ID: 29065259
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Soft Self-Healing Fluidic Tactile Sensors with Damage Detection and Localization Abilities.
    George Thuruthel T; Bosman AW; Hughes J; Iida F
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960380
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Soft Tactile Sensor Based on Magnetics and Hybrid Flexible-Rigid Electronics.
    Neto M; Ribeiro P; Nunes R; Jamone L; Bernardino A; Cardoso S
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372335
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Behavior-Learned Cross-Reactive Sensor Matrix for Intelligent Skin Perception.
    Lee JH; Heo JS; Kim YJ; Eom J; Jung HJ; Kim JW; Kim I; Park HH; Mo HS; Kim YH; Park SK
    Adv Mater; 2020 Jun; 32(22):e2000969. PubMed ID: 32310332
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Review of 3D-printing technologies for wearable and implantable bio-integrated sensors.
    Rachim VP; Park SM
    Essays Biochem; 2021 Aug; 65(3):491-502. PubMed ID: 33860794
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Demonstration of Fully Integrable Long-Range Microposition Detection with Wafer-Level Embedded Micromagnets.
    Gojdka B; Cichon D; Lembrecht Y; Bodduluri MT; Lisec T; Stahl-Offergeld M; Hohe HP; Niekiel F
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208359
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D Printing Technologies for Flexible Tactile Sensors toward Wearable Electronics and Electronic Skin.
    Liu C; Huang N; Xu F; Tong J; Chen Z; Gui X; Fu Y; Lao C
    Polymers (Basel); 2018 Jun; 10(6):. PubMed ID: 30966663
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A paper-based touch sensor with an embedded micro-probe array fabricated by double-sided laser printing.
    Huang GW; Li N; Xiao HM; Feng QP; Fu SY
    Nanoscale; 2017 Jul; 9(27):9598-9605. PubMed ID: 28665426
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A fully 3D printed electronic skin with bionic high resolution and air permeable porous structure.
    Pei Z; Zhang Q; Li Q; Ji C; Liu Y; Yang K; Zhuo K; Zhang W; Sang S
    J Colloid Interface Sci; 2021 Nov; 602():452-458. PubMed ID: 34144302
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Large-Area High-Performance Flexible Pressure Sensor with Carbon Nanotube Active Matrix for Electronic Skin.
    Nela L; Tang J; Cao Q; Tulevski G; Han SJ
    Nano Lett; 2018 Mar; 18(3):2054-2059. PubMed ID: 29442518
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Flexible Ti
    Zhi H; Zhang X; Wang F; Wan P; Feng L
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):45987-45994. PubMed ID: 34523329
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Non-Touchscreen Tactile Wearable Interface as an Alternative to Touchscreen-Based Wearable Devices.
    Yoon H; Park SH
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32111082
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Validation of Screen-Printed Electronic Skin Based on Piezoelectric Polymer Sensors.
    Fares H; Abbass Y; Valle M; Seminara L
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32093208
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Laser micro-structured pressure sensor with modulated sensitivity for electronic skins.
    Gao Y; Lu C; Guohui Y; Sha J; Tan J; Xuan F
    Nanotechnology; 2019 Aug; 30(32):325502. PubMed ID: 30995625
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Locally Controlled Sensing Properties of Stretchable Pressure Sensors Enabled by Micro-Patterned Piezoresistive Device Architecture.
    Lee JH; Heo JS; Lee KW; Shin JC; Jo JW; Kim YH; Park SK
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33218017
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electronic Skin Based on a Cellulose/Carbon Nanotube Fiber Network for Large-Area 3D Touch and Real-Time 3D Surface Scanning.
    Kim D; Lee DK; Yoon J; Hahm D; Lee B; Oh E; Kim G; Seo J; Kim H; Hong Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(44):53111-53119. PubMed ID: 34709790
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tunable, Ultrasensitive, and Flexible Pressure Sensors Based on Wrinkled Microstructures for Electronic Skins.
    Zeng X; Wang Z; Zhang H; Yang W; Xiang L; Zhao Z; Peng LM; Hu Y
    ACS Appl Mater Interfaces; 2019 Jun; 11(23):21218-21226. PubMed ID: 31099240
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent Advances in Flexible Tactile Sensors for Intelligent Systems.
    Peng Y; Yang N; Xu Q; Dai Y; Wang Z
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450833
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Paper-Based Active Tactile Sensor Array.
    Zhong Q; Zhong J; Cheng X; Yao X; Wang B; Li W; Wu N; Liu K; Hu B; Zhou J
    Adv Mater; 2015 Nov; 27(44):7130-6. PubMed ID: 26450138
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly Sensitive and Wearable Liquid Metal-Based Pressure Sensor for Health Monitoring Applications: Integration of a 3D-Printed Microbump Array with the Microchannel.
    Kim K; Choi J; Jeong Y; Cho I; Kim M; Kim S; Oh Y; Park I
    Adv Healthc Mater; 2019 Nov; 8(22):e1900978. PubMed ID: 31596545
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.