These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 35440835)
1. Fractional-order backstepping strategy for fractional-order model of COVID-19 outbreak. Veisi A; Delavari H Math Methods Appl Sci; 2022 May; 45(7):3479-3496. PubMed ID: 35440835 [TBL] [Abstract][Full Text] [Related]
2. A fractional-order model for the novel coronavirus (COVID-19) outbreak. Rajagopal K; Hasanzadeh N; Parastesh F; Hamarash II; Jafari S; Hussain I Nonlinear Dyn; 2020; 101(1):711-718. PubMed ID: 32836806 [TBL] [Abstract][Full Text] [Related]
3. Intelligent fractional-order backstepping control for an ironless linear synchronous motor with uncertain nonlinear dynamics. Chen SY; Li TH; Chang CH ISA Trans; 2019 Jun; 89():218-232. PubMed ID: 30621909 [TBL] [Abstract][Full Text] [Related]
4. Adaptive fractional fuzzy sliding mode control of microgyroscope based on backstepping design. Liang X; Fei J PLoS One; 2019; 14(6):e0218425. PubMed ID: 31233526 [TBL] [Abstract][Full Text] [Related]
5. The impact of vaccination on the modeling of COVID-19 dynamics: a fractional order model. Ali A; Ullah S; Khan MA Nonlinear Dyn; 2022; 110(4):3921-3940. PubMed ID: 36060280 [TBL] [Abstract][Full Text] [Related]
6. A fractional-order mathematical model for analyzing the pandemic trend of COVID-19. Agarwal P; Ramadan MA; Rageh AAM; Hadhoud AR Math Methods Appl Sci; 2022 May; 45(8):4625-4642. PubMed ID: 35464830 [TBL] [Abstract][Full Text] [Related]
7. Is fractional-order chaos theory the new tool to model chaotic pandemics as Covid-19? Borah M; Gayan A; Sharma JS; Chen Y; Wei Z; Pham VT Nonlinear Dyn; 2022; 109(2):1187-1215. PubMed ID: 35634246 [TBL] [Abstract][Full Text] [Related]
8. A fractional order mathematical model for COVID-19 dynamics with quarantine, isolation, and environmental viral load. Aba Oud MA; Ali A; Alrabaiah H; Ullah S; Khan MA; Islam S Adv Differ Equ; 2021; 2021(1):106. PubMed ID: 33613668 [TBL] [Abstract][Full Text] [Related]
9. Fractional-Order SEIQRDP Model for Simulating the Dynamics of COVID-19 Epidemic. Bahloul MA; Chahid A; Laleg-Kirati TM IEEE Open J Eng Med Biol; 2020; 1():249-256. PubMed ID: 35402939 [No Abstract] [Full Text] [Related]
10. Fractional Model with Social Distancing Parameter for Early Estimation of COVID-19 Spread. Chandra SK; Bajpai MK Arab J Sci Eng; 2022; 47(1):209-218. PubMed ID: 34178570 [TBL] [Abstract][Full Text] [Related]
11. Optimal adaptive interval type-2 fuzzy fractional-order backstepping sliding mode control method for some classes of nonlinear systems. Moezi SA; Zakeri E; Eghtesad M ISA Trans; 2019 Oct; 93():23-39. PubMed ID: 30876757 [TBL] [Abstract][Full Text] [Related]
12. A fractional order approach to modeling and simulations of the novel COVID-19. Owusu-Mensah I; Akinyemi L; Oduro B; Iyiola OS Adv Differ Equ; 2020; 2020(1):683. PubMed ID: 33288983 [TBL] [Abstract][Full Text] [Related]
13. Integral backstepping sliding mode control for underactuated systems: swing-up and stabilization of the Cart-Pendulum System. Adhikary N; Mahanta C ISA Trans; 2013 Nov; 52(6):870-80. PubMed ID: 23932857 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of fractional order COVID-19 model with a case study of Saudi Arabia. Chu YM; Ali A; Khan MA; Islam S; Ullah S Results Phys; 2021 Feb; 21():103787. PubMed ID: 33552881 [TBL] [Abstract][Full Text] [Related]
15. Novel fractional order SIDARTHE mathematical model of COVID-19 pandemic. Higazy M Chaos Solitons Fractals; 2020 Sep; 138():110007. PubMed ID: 32565624 [TBL] [Abstract][Full Text] [Related]
16. A new fractional-order sliding mode controller via a nonlinear disturbance observer for a class of dynamical systems with mismatched disturbances. Pashaei S; Badamchizadeh M ISA Trans; 2016 Jul; 63():39-48. PubMed ID: 27108564 [TBL] [Abstract][Full Text] [Related]
17. Adaptive super-twisting sliding mode observer based robust backstepping sensorless speed control for IPMSM. Wu S; Zhang J; Chai B ISA Trans; 2019 Sep; 92():155-165. PubMed ID: 31056215 [TBL] [Abstract][Full Text] [Related]
18. Projective synchronization of nonidentical fractional-order neural networks based on sliding mode controller. Ding Z; Shen Y Neural Netw; 2016 Apr; 76():97-105. PubMed ID: 26874968 [TBL] [Abstract][Full Text] [Related]
19. A hybrid fractional optimal control for a novel Coronavirus (2019-nCov) mathematical model. Sweilam NH; Al-Mekhlafi SM; Baleanu D J Adv Res; 2021 Sep; 32():149-160. PubMed ID: 32864171 [TBL] [Abstract][Full Text] [Related]
20. Some novel mathematical analysis on the fractional-order 2019-nCoV dynamical model. Owoyemi AE; Sulaiman IM; Kumar P; Govindaraj V; Mamat M Math Methods Appl Sci; 2022 Oct; ():. PubMed ID: 36714679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]