BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 35441324)

  • 1. Characterizing the Effects of Nasal Prong Interfaces on Aerosol Deposition in a Preterm Infant Nasal Model.
    Bass K; Momin MAM; Howe C; Aladwani G; Strickler S; Kolanjiyil AV; Hindle M; DiBlasi RM; Longest W
    AAPS PharmSciTech; 2022 Apr; 23(5):114. PubMed ID: 35441324
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Howe C; Momin MAM; Bass K; Aladwani G; Bonasera S; Hindle M; Longest PW
    J Aerosol Med Pulm Drug Deliv; 2022 Aug; 35(4):196-211. PubMed ID: 35166601
    [No Abstract]   [Full Text] [Related]  

  • 3. Initial Development of an Air-Jet Dry Powder Inhaler for Rapid Delivery of Pharmaceutical Aerosols to Infants.
    Howe C; Hindle M; Bonasera S; Rani V; Longest PW
    J Aerosol Med Pulm Drug Deliv; 2021 Feb; 34(1):57-70. PubMed ID: 32758026
    [No Abstract]   [Full Text] [Related]  

  • 4. Advancement of the Infant Air-Jet Dry Powder Inhaler (DPI): Evaluation of Different Positive-Pressure Air Sources and Flow Rates.
    Howe C; Momin MAM; Farkas DR; Bonasera S; Hindle M; Longest PW
    Pharm Res; 2021 Sep; 38(9):1615-1632. PubMed ID: 34462876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Near Elimination of In Vitro Predicted Extrathoracic Aerosol Deposition in Children Using a Spray-Dried Antibiotic Formulation and Pediatric Air-Jet DPI.
    Farkas D; Thomas ML; Hassan A; Bonasera S; Hindle M; Longest W
    Pharm Res; 2023 May; 40(5):1193-1207. PubMed ID: 35761163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of Dry Powder Inhaler Patient Interfaces for Improved Aerosol Delivery to Children.
    Bass K; Longest W
    AAPS PharmSciTech; 2020 May; 21(5):157. PubMed ID: 32451773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a High-Dose Infant Air-Jet Dry Powder Inhaler (DPI) with Passive Cyclic Loading of the Formulation.
    Howe C; Momin MAM; Aladwani G; Hindle M; Longest PW
    Pharm Res; 2022 Dec; 39(12):3317-3330. PubMed ID: 36253630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing Aerosolization Using Computational Fluid Dynamics in a Pediatric Air-Jet Dry Powder Inhaler.
    Bass K; Farkas D; Longest W
    AAPS PharmSciTech; 2019 Nov; 20(8):329. PubMed ID: 31676991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Nose-to-Lung (N2L) Aerosol Delivery with a Dry Powder Inhaler.
    Longest PW; Golshahi L; Behara SR; Tian G; Farkas DR; Hindle M
    J Aerosol Med Pulm Drug Deliv; 2015 Jun; 28(3):189-201. PubMed ID: 25192072
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an Inline Dry Powder Inhaler for Oral or Trans-Nasal Aerosol Administration to Children.
    Farkas D; Hindle M; Bonasera S; Bass K; Longest W
    J Aerosol Med Pulm Drug Deliv; 2020 Apr; 33(2):83-98. PubMed ID: 31464559
    [No Abstract]   [Full Text] [Related]  

  • 11. High-Efficiency Nose-to-Lung Aerosol Delivery in an Infant: Development of a Validated Computational Fluid Dynamics Method.
    Bass K; Boc S; Hindle M; Dodson K; Longest W
    J Aerosol Med Pulm Drug Deliv; 2019 Jun; 32(3):132-148. PubMed ID: 30556777
    [No Abstract]   [Full Text] [Related]  

  • 12. Advancement of a Positive-Pressure Dry Powder Inhaler for Children: Use of a Vertical Aerosolization Chamber and Three-Dimensional Rod Array Interface.
    Farkas D; Bonasera S; Bass K; Hindle M; Longest PW
    Pharm Res; 2020 Aug; 37(9):177. PubMed ID: 32862295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CFD Guided Optimization of Nose-to-Lung Aerosol Delivery in Adults: Effects of Inhalation Waveforms and Synchronized Aerosol Delivery.
    Dutta R; Spence B; Wei X; Dhapare S; Hindle M; Longest PW
    Pharm Res; 2020 Sep; 37(10):199. PubMed ID: 32968848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advancement of a high-dose infant air-jet dry powder inhaler (DPI) with passive cyclic loading: Performance tuning for different formulations.
    Howe C; Momin MAM; Aladwani G; Strickler S; Hindle M; Longest W
    Int J Pharm; 2023 Aug; 643():123199. PubMed ID: 37406945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Nose-to-Lung Aerosol Delivery with an Inline DPI Requiring Low Actuation Air Volume.
    Farkas D; Hindle M; Longest PW
    Pharm Res; 2018 Aug; 35(10):194. PubMed ID: 30132207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Air-Jet Dry Powder Insufflator for High-Efficiency Aerosol Delivery to Rats.
    Pangeni R; Hassan AAM; Farkas D; Sudarjat H; Longest W; Hindle M; Xu Q
    Mol Pharm; 2023 Apr; 20(4):2207-2216. PubMed ID: 36938947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of an inline dry powder inhaler to deliver high dose pharmaceutical aerosols during low flow nasal cannula therapy.
    Farkas D; Hindle M; Longest PW
    Int J Pharm; 2018 Jul; 546(1-2):1-9. PubMed ID: 29733972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Fluid Dynamics (CFD) Guided Spray Drying Recommendations for Improved Aerosol Performance of a Small-Particle Antibiotic Formulation.
    Longest W; Hassan A; Farkas D; Hindle M
    Pharm Res; 2022 Feb; 39(2):295-316. PubMed ID: 35147870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro tests for aerosol deposition. III: effect of inhaler insertion angle on aerosol deposition.
    Delvadia RR; Longest PW; Hindle M; Byron PR
    J Aerosol Med Pulm Drug Deliv; 2013 Jun; 26(3):145-56. PubMed ID: 23025452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dry powder inhaler aerosol deposition in a model of tracheobronchial airways: Validating CFD predictions with in vitro data.
    Ahookhosh K; Saidi M; Aminfar H; Mohammadpourfard M; Hamishehkar H; Yaqoubi S
    Int J Pharm; 2020 Sep; 587():119599. PubMed ID: 32663586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.