These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35441499)

  • 1. Several Key Factors for Efficient Electrocatalytic Water Splitting: Active Site Coordination Environment, Morphology Changes and Intermediates Identification.
    Hu C; Hu Y; Zhu A; Li M; Wei J; Zhang Y; Xie W
    Chemistry; 2022 Jun; 28(36):e202200138. PubMed ID: 35441499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting.
    Jiang WJ; Tang T; Zhang Y; Hu JS
    Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2D Metal-Organic Frameworks as Competent Electrocatalysts for Water Splitting.
    Wang CP; Lin YX; Cui L; Zhu J; Bu XH
    Small; 2023 Apr; 19(15):e2207342. PubMed ID: 36605002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts.
    Wu T; Dong C; Sun D; Huang F
    Nanoscale; 2021 Jan; 13(3):1581-1595. PubMed ID: 33444426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of In Situ Techniques for the Characterization of NiFe-Based Oxygen Evolution Reaction (OER) Electrocatalysts.
    Zhu K; Zhu X; Yang W
    Angew Chem Int Ed Engl; 2019 Jan; 58(5):1252-1265. PubMed ID: 29665168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics and control of active sites in hierarchically nanostructured cobalt phosphide/chalcogenide-based electrocatalysts for water splitting.
    Zhao Y; Dongfang N; Triana CA; Huang C; Erni R; Wan W; Li J; Stoian D; Pan L; Zhang P; Lan J; Iannuzzi M; Patzke GR
    Energy Environ Sci; 2022 Feb; 15(2):727-739. PubMed ID: 35308298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing MOF Nanoarchitectures for Electrochemical Water Splitting.
    Zhang B; Zheng Y; Ma T; Yang C; Peng Y; Zhou Z; Zhou M; Li S; Wang Y; Cheng C
    Adv Mater; 2021 Apr; 33(17):e2006042. PubMed ID: 33749910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Support and Interface Effects in Water-Splitting Electrocatalysts.
    Zhang J; Zhang Q; Feng X
    Adv Mater; 2019 Aug; 31(31):e1808167. PubMed ID: 30838688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomically Dispersed Reactive Centers for Electrocatalytic CO
    Zhang H; Cheng W; Luan D; Lou XWD
    Angew Chem Int Ed Engl; 2021 Jun; 60(24):13177-13196. PubMed ID: 33314631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advances of Modified Ni (Co, Fe)-Based LDH 2D Materials for Water Splitting.
    Li C; Bao Y; Liu E; Zhao B; Sun T
    Molecules; 2023 Feb; 28(3):. PubMed ID: 36771139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mastering the D-Band Center of Iron-Series Metal-Based Electrocatalysts for Enhanced Electrocatalytic Water Splitting.
    Hu J; Al-Salihy A; Zhang B; Li S; Xu P
    Int J Mol Sci; 2022 Dec; 23(23):. PubMed ID: 36499732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uncovering the Nature of Active Sites during Electrocatalytic Reactions by
    Cao L; Liu X; Shen X; Wu D; Yao T
    Acc Chem Res; 2022 Sep; 55(18):2594-2603. PubMed ID: 36044043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Electrocatalytic Water Splitting by Strain Engineering.
    You B; Tang MT; Tsai C; Abild-Pedersen F; Zheng X; Li H
    Adv Mater; 2019 Apr; 31(17):e1807001. PubMed ID: 30773741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emerging Electrochemical Techniques for Probing Site Behavior in Single-Atom Electrocatalysts.
    Jin Z; Li P; Fang Z; Yu G
    Acc Chem Res; 2022 Mar; 55(5):759-769. PubMed ID: 35148075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Active Fe Sites in Ultrathin Pyrrhotite Fe
    Chen S; Kang Z; Zhang X; Xie J; Wang H; Shao W; Zheng X; Yan W; Pan B; Xie Y
    ACS Cent Sci; 2017 Nov; 3(11):1221-1227. PubMed ID: 29202024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review.
    Liu F; Shi C; Guo X; He Z; Pan L; Huang ZF; Zhang X; Zou JJ
    Adv Sci (Weinh); 2022 Jun; 9(18):e2200307. PubMed ID: 35435329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance.
    Wang P; Wang B
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):59593-59617. PubMed ID: 34878246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Self-Reconstruction of Catalysts in Electrocatalysis.
    Jiang H; He Q; Zhang Y; Song L
    Acc Chem Res; 2018 Nov; 51(11):2968-2977. PubMed ID: 30375841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in hollow nanomaterials with multiple dimensions for electrocatalytic water splitting.
    Yang L; Xu H; He G; Chen H
    Dalton Trans; 2022 Sep; 51(36):13559-13572. PubMed ID: 36018245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transition-Metal-Doped RuIr Bifunctional Nanocrystals for Overall Water Splitting in Acidic Environments.
    Shan J; Ling T; Davey K; Zheng Y; Qiao SZ
    Adv Mater; 2019 Apr; 31(17):e1900510. PubMed ID: 30811671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.