BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35441622)

  • 1. Supramolecularly regulated artificial transmembrane signal transduction for 'ON/OFF'-switchable enzyme catalysis.
    Hou J; Jiang X; Yang F; Wang L; Yan T; Liu S; Xu J; Hou C; Luo Q; Liu J
    Chem Commun (Camb); 2022 May; 58(38):5725-5728. PubMed ID: 35441622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-controlled artificial transmembrane signal transduction for 'ON/OFF'-switchable transphosphorylation of an RNA model substrate.
    Hou J; Guo J; Yan T; Liu S; Zang M; Wang L; Xu J; Luo Q; Wang T; Liu J
    Chem Sci; 2023 Jun; 14(22):6039-6044. PubMed ID: 37293632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Folding and Unfolding of a Fully Synthetic Transmembrane Receptor for ON/OFF Signal Transduction.
    Pang S; Liu J; Li T; Ye K; Yan Z; Zhao L; Bao C
    J Am Chem Soc; 2023 Sep; 145(38):20761-20766. PubMed ID: 37699413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition-Controlled Membrane Translocation for Signal Transduction across Lipid Bilayers.
    Langton MJ; Williams NH; Hunter CA
    J Am Chem Soc; 2017 May; 139(18):6461-6466. PubMed ID: 28462993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Triggered Release from Lipid Bilayer Vesicles by an Artificial Transmembrane Signal Transduction System.
    Langton MJ; Scriven LM; Williams NH; Hunter CA
    J Am Chem Soc; 2017 Nov; 139(44):15768-15773. PubMed ID: 28876061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transmembrane signal transduction by cofactor transport.
    Kocsis I; Ding Y; Williams NH; Hunter CA
    Chem Sci; 2021 Sep; 12(37):12377-12382. PubMed ID: 34603667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermolecular communication on a liposomal membrane: enzymatic amplification of a photonic signal with a gemini peptide lipid as a membrane-bound artificial receptor.
    Mukai M; Maruo K; Sasaki Y; Kikuchi J
    Chemistry; 2012 Mar; 18(11):3258-63. PubMed ID: 22311830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled membrane translocation provides a mechanism for signal transduction and amplification.
    Langton MJ; Keymeulen F; Ciaccia M; Williams NH; Hunter CA
    Nat Chem; 2017 May; 9(5):426-430. PubMed ID: 28430205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled dimerization of artificial membrane receptors for transmembrane signal transduction.
    Chen H; Zhou L; Li C; He X; Huang J; Yang X; Shi H; Wang K; Liu J
    Chem Sci; 2021 May; 12(23):8224-8230. PubMed ID: 34194713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Synthetic Vesicle-to-Vesicle Communication System.
    Ding Y; Williams NH; Hunter CA
    J Am Chem Soc; 2019 Nov; 141(44):17847-17853. PubMed ID: 31642667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switching of the enzymatic activity synchronized with signal recognition by an artificial DNA receptor on a liposomal membrane.
    Sasaki Y; Mukai M; Kawasaki A; Yasuhara K; Kikuchi J
    Org Biomol Chem; 2011 Apr; 9(7):2397-402. PubMed ID: 21321765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A host-guest approach to combining enzymatic and artificial catalysis for catalyzing biomimetic monooxygenation.
    Zhao L; Cai J; Li Y; Wei J; Duan C
    Nat Commun; 2020 Jun; 11(1):2903. PubMed ID: 32518257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation.
    Jiao Y; Li WL; Xu JF; Wang G; Li J; Wang Z; Zhang X
    Angew Chem Int Ed Engl; 2016 Jul; 55(31):8933-7. PubMed ID: 27273046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecularly Catalyzed Polymerization: From Consecutive Dimerization to Polymerization.
    Tang X; Huang Z; Chen H; Kang Y; Xu JF; Zhang X
    Angew Chem Int Ed Engl; 2018 Jul; 57(28):8545-8549. PubMed ID: 29756289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular Regulation of Catalytic Activity for an Amphiphilic Pyrene-Ruthenium Complex in Water.
    Dai N; Qi R; Zhao H; Liu L; Lv F; Wang S
    Chemistry; 2021 Aug; 27(45):11567-11573. PubMed ID: 34060163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. N-Substituted Acridinium as a Multi-Responsive Recognition Unit in Supramolecular Chemistry.
    Jacquot de Rouville HP; Hu J; Heitz V
    Chempluschem; 2021 Jan; 86(1):110-129. PubMed ID: 33400395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular chiroptical switches.
    Zhang L; Wang HX; Li S; Liu M
    Chem Soc Rev; 2020 Dec; 49(24):9095-9120. PubMed ID: 33118560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoswitchable catalysis controlled by reversible dispersion/aggregation change of nanoreactors in the presence of α-CD polymers.
    Li Y; Hu J; Niu C; Leng J; Li S
    Nanotechnology; 2018 Jun; 29(22):225501. PubMed ID: 29480812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of a artificial glutathione peroxidase with temperature-dependent activity based on a supramolecular graft copolymer.
    Yin Y; Jiao S; Wang Y; Zhang R; Shi Z; Hu X
    Chembiochem; 2015 Mar; 16(4):670-6. PubMed ID: 25683962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembled Tetrahedral Hosts as Supramolecular Catalysts.
    Hong CM; Bergman RG; Raymond KN; Toste FD
    Acc Chem Res; 2018 Oct; 51(10):2447-2455. PubMed ID: 30272943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.