These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 35441624)
1. Bacteria-responsive biopolymer-coated nanoparticles for biofilm penetration and eradication. Wang Y; Shukla A Biomater Sci; 2022 May; 10(11):2831-2843. PubMed ID: 35441624 [TBL] [Abstract][Full Text] [Related]
2. Enhancing antibiofilm activity with functional chitosan nanoparticles targeting biofilm cells and biofilm matrix. Tan Y; Ma S; Leonhard M; Moser D; Haselmann GM; Wang J; Eder D; Schneider-Stickler B Carbohydr Polym; 2018 Nov; 200():35-42. PubMed ID: 30177175 [TBL] [Abstract][Full Text] [Related]
3. Step-by-step dual stimuli-responsive nanoparticles for efficient bacterial biofilm eradication. Fan Q; Wang C; Guo R; Jiang X; Li W; Chen X; Li K; Hong W Biomater Sci; 2021 Oct; 9(20):6889-6902. PubMed ID: 34519743 [TBL] [Abstract][Full Text] [Related]
4. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. Baelo A; Levato R; Julián E; Crespo A; Astola J; Gavaldà J; Engel E; Mateos-Timoneda MA; Torrents E J Control Release; 2015 Jul; 209():150-8. PubMed ID: 25913364 [TBL] [Abstract][Full Text] [Related]
5. Photothermally responsive chitosan-coated iron oxide nanoparticles for enhanced eradication of bacterial biofilms. Saravanakumar K; Sathiyaseelan A; Manivasagan P; Jeong MS; Choi M; Jang ES; Priya VV; Wang MH Biomater Adv; 2022 Oct; 141():213129. PubMed ID: 36191538 [TBL] [Abstract][Full Text] [Related]
6. Antibiofilm activity of polyethylene glycol-quercetin nanoparticles-loaded gelatin-N,O-carboxymethyl chitosan composite nanogels against Luo W; Jiang Y; Liu J; Sun B; Gao X; Algharib SA; Guo D; Wei J; Wei Y J Vet Sci; 2024 Mar; 25(2):e30. PubMed ID: 38568831 [TBL] [Abstract][Full Text] [Related]
7. Evolution of biofilm-forming pathogenic bacteria in the presence of nanoparticles and antibiotic: adaptation phenomena and cross-resistance. Mann R; Holmes A; McNeilly O; Cavaliere R; Sotiriou GA; Rice SA; Gunawan C J Nanobiotechnology; 2021 Sep; 19(1):291. PubMed ID: 34579731 [TBL] [Abstract][Full Text] [Related]
8. Mucus penetration enhanced lipid polymer nanoparticles improve the eradication rate of Helicobacter pylori biofilm. Li P; Chen X; Shen Y; Li H; Zou Y; Yuan G; Hu P; Hu H J Control Release; 2019 Apr; 300():52-63. PubMed ID: 30825476 [TBL] [Abstract][Full Text] [Related]
9. Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Khan F; Pham DTN; Oloketuyi SF; Manivasagan P; Oh J; Kim YM Colloids Surf B Biointerfaces; 2020 Jan; 185():110627. PubMed ID: 31732391 [TBL] [Abstract][Full Text] [Related]
10. New dynamic microreactor system to mimic biofilm formation and test anti-biofilm activity of nanoparticles. Bourguignon N; Kamat V; Perez M; Mathee K; Lerner B; Bhansali S Appl Microbiol Biotechnol; 2022 Apr; 106(7):2729-2738. PubMed ID: 35325273 [TBL] [Abstract][Full Text] [Related]
11. The effect of gold and silver nanoparticles, chitosan and their combinations on bacterial biofilms of food-borne pathogens. Chlumsky O; Purkrtova S; Michova Turonova H; Svarcova Fuchsova V; Slepicka P; Fajstavr D; Ulbrich P; Demnerova K Biofouling; 2020 Feb; 36(2):222-233. PubMed ID: 32316774 [TBL] [Abstract][Full Text] [Related]
12. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. Horev B; Klein MI; Hwang G; Li Y; Kim D; Koo H; Benoit DS ACS Nano; 2015 Mar; 9(3):2390-404. PubMed ID: 25661192 [TBL] [Abstract][Full Text] [Related]
13. Preparation and antibiofilm studies of curcumin loaded chitosan nanoparticles against polymicrobial biofilms of Candida albicans and Staphylococcus aureus. Ma S; Moser D; Han F; Leonhard M; Schneider-Stickler B; Tan Y Carbohydr Polym; 2020 Aug; 241():116254. PubMed ID: 32507182 [TBL] [Abstract][Full Text] [Related]
14. Biofilm prevention of gram-negative bacterial pathogens involved in periprosthetic infection by antibiotic-loaded calcium sulfate beads in vitro. Howlin RP; Winnard C; Frapwell CJ; Webb JS; Cooper JJ; Aiken SS; Stoodley P Biomed Mater; 2016 Dec; 12(1):015002. PubMed ID: 27910828 [TBL] [Abstract][Full Text] [Related]
15. Antibiofilm efficacy of photosensitizer-functionalized bioactive nanoparticles on multispecies biofilm. Shrestha A; Kishen A J Endod; 2014 Oct; 40(10):1604-10. PubMed ID: 25260731 [TBL] [Abstract][Full Text] [Related]
17. Microneedle Patch-Mediated Treatment of Bacterial Biofilms. Xu J; Danehy R; Cai H; Ao Z; Pu M; Nusawardhana A; Rowe-Magnus D; Guo F ACS Appl Mater Interfaces; 2019 Apr; 11(16):14640-14646. PubMed ID: 30933463 [TBL] [Abstract][Full Text] [Related]
18. Nanogel-based composites for bacterial antibiofilm activity: advances, challenges, and prospects. Ali AA; Al Bostami RD; Al-Othman A RSC Adv; 2024 Mar; 14(15):10546-10559. PubMed ID: 38567332 [TBL] [Abstract][Full Text] [Related]
19. Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication. Pan T; Chen H; Gao X; Wu Z; Ye Y; Shen Y J Hazard Mater; 2022 Aug; 435():128996. PubMed ID: 35487006 [TBL] [Abstract][Full Text] [Related]
20. Integration of Lysin into Chitosan Nanoparticles for Improving Bacterial Biofilm Inhibition. Liu B; Li Z; Guo Q; Guo X; Liu R; Liu X Appl Biochem Biotechnol; 2024 Mar; 196(3):1592-1611. PubMed ID: 37436548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]