These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 35441833)
1. Development of a miniature bioreactor model to study the impact of pH and DOT fluctuations on CHO cell culture performance as a tool to understanding heterogeneity effects at large-scale. Zakrzewski R; Lee K; Lye GJ Biotechnol Prog; 2022 Jul; 38(4):e3264. PubMed ID: 35441833 [TBL] [Abstract][Full Text] [Related]
2. Process parameter shifting: Part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors. Trummer E; Fauland K; Seidinger S; Schriebl K; Lattenmayer C; Kunert R; Vorauer-Uhl K; Weik R; Borth N; Katinger H; Müller D Biotechnol Bioeng; 2006 Aug; 94(6):1033-44. PubMed ID: 16736530 [TBL] [Abstract][Full Text] [Related]
3. Mimicking CHO large-scale effects in the single multicompartment bioreactor: A new approach to access scale-up behavior. Gaugler L; Hofmann S; Schlüter M; Takors R Biotechnol Bioeng; 2024 Apr; 121(4):1244-1256. PubMed ID: 38192095 [TBL] [Abstract][Full Text] [Related]
4. Living with heterogeneities in bioreactors: understanding the effects of environmental gradients on cells. Lara AR; Galindo E; Ramírez OT; Palomares LA Mol Biotechnol; 2006 Nov; 34(3):355-81. PubMed ID: 17284782 [TBL] [Abstract][Full Text] [Related]
6. Twenty-four well plate miniature bioreactor system as a scale-down model for cell culture process development. Chen A; Chitta R; Chang D; Amanullah A Biotechnol Bioeng; 2009 Jan; 102(1):148-60. PubMed ID: 18683260 [TBL] [Abstract][Full Text] [Related]
7. Scale-up analysis for a CHO cell culture process in large-scale bioreactors. Xing Z; Kenty BM; Li ZJ; Lee SS Biotechnol Bioeng; 2009 Jul; 103(4):733-46. PubMed ID: 19280669 [TBL] [Abstract][Full Text] [Related]
8. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control. Rameez S; Mostafa SS; Miller C; Shukla AA Biotechnol Prog; 2014; 30(3):718-27. PubMed ID: 24449637 [TBL] [Abstract][Full Text] [Related]
9. Control of galactosylated glycoforms distribution in cell culture system. McCracken NA; Kowle R; Ouyang A Biotechnol Prog; 2014; 30(3):547-53. PubMed ID: 24692242 [TBL] [Abstract][Full Text] [Related]
10. Batch, fed-batch, and microcarrier cultures with CHO cell lines in a pressure-cycle driven miniaturized bioreactor. Kim BJ; Zhao T; Young L; Zhou P; Shuler ML Biotechnol Bioeng; 2012 Jan; 109(1):137-45. PubMed ID: 21965160 [TBL] [Abstract][Full Text] [Related]
11. A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells. Legmann R; Schreyer HB; Combs RG; McCormick EL; Russo AP; Rodgers ST Biotechnol Bioeng; 2009 Dec; 104(6):1107-20. PubMed ID: 19623562 [TBL] [Abstract][Full Text] [Related]
12. High-density mammalian cell cultures in stirred-tank bioreactor without external pH control. Xu S; Chen H J Biotechnol; 2016 Aug; 231():149-159. PubMed ID: 27320019 [TBL] [Abstract][Full Text] [Related]
13. Enhancing the functionality of a microscale bioreactor system as an industrial process development tool for mammalian perfusion culture. Sewell DJ; Turner R; Field R; Holmes W; Pradhan R; Spencer C; Oliver SG; Slater NK; Dikicioglu D Biotechnol Bioeng; 2019 Jun; 116(6):1315-1325. PubMed ID: 30712286 [TBL] [Abstract][Full Text] [Related]
14. Systematic development of temperature shift strategies for Chinese hamster ovary cells based on short duration cultures and kinetic modeling. Xu J; Tang P; Yongky A; Drew B; Borys MC; Liu S; Li ZJ MAbs; 2019 Jan; 11(1):191-204. PubMed ID: 30230966 [TBL] [Abstract][Full Text] [Related]
15. DirectedCHO: A new miniaturized directed evolution process for phenotype stability trial test of CHO cells before bioreactor scale-up. Thimiri Govinda Raj DB; Musasira N; Takundwa MM SLAS Technol; 2024 Aug; 29(4):100130. PubMed ID: 38561084 [TBL] [Abstract][Full Text] [Related]
16. Impacts of intentional mycoplasma contamination on CHO cell bioreactor cultures. Fratz-Berilla EJ; Faison T; Kohnhorst CL; Velugula-Yellela SR; Powers DN; Brorson K; Agarabi C Biotechnol Bioeng; 2019 Dec; 116(12):3242-3252. PubMed ID: 31478189 [TBL] [Abstract][Full Text] [Related]
17. Hypoxia influences protein transport and epigenetic repression of CHO cell cultures in shake flasks. Qian Y; Xing Z; Lee S; Mackin NA; He A; Kayne PS; He Q; Qian NX; Li ZJ Biotechnol J; 2014 Nov; 9(11):1413-24. PubMed ID: 25271019 [TBL] [Abstract][Full Text] [Related]
18. Development of a scale-up strategy for Chinese hamster ovary cell culture processes using the k Doi T; Kajihara H; Chuman Y; Kuwae S; Kaminagayoshi T; Omasa T Biotechnol Prog; 2020 Sep; 36(5):e3000. PubMed ID: 32298540 [TBL] [Abstract][Full Text] [Related]
19. pH measurement and a rational and practical pH control strategy for high throughput cell culture system. Zhou H; Purdie J; Wang T; Ouyang A Biotechnol Prog; 2010; 26(3):872-80. PubMed ID: 20039376 [TBL] [Abstract][Full Text] [Related]
20. Understanding the effect of high gas entrance velocity on Chinese hamster ovary (CHO) cell culture performance and its implications on bioreactor scale-up and sparger design. Chaudhary G; Luo R; George M; Tescione L; Khetan A; Lin H Biotechnol Bioeng; 2020 Jun; 117(6):1684-1695. PubMed ID: 32086806 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]