These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 35442086)

  • 1. Fibrinolysis Regulation: A Promising Approach to Promote Osteogenesis.
    Lu H; Xiao L; Wang W; Li X; Ma Y; Zhang Y; Wang X
    Tissue Eng Part B Rev; 2022 Dec; 28(6):1192-1208. PubMed ID: 35442086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous Se@SiO
    Li C; Wang Q; Gu X; Kang Y; Zhang Y; Hu Y; Li T; Jin H; Deng G; Wang Q
    Int J Nanomedicine; 2019; 14():3845-3860. PubMed ID: 31213805
    [No Abstract]   [Full Text] [Related]  

  • 3. Functional Scaffold-Free Bone Equivalents Induce Osteogenic and Angiogenic Processes in a Human In Vitro Fracture Hematoma Model.
    Pfeiffenberger M; Damerau A; Ponomarev I; Bucher CH; Chen Y; Barnewitz D; Thöne-Reineke C; Hoff P; Buttgereit F; Gaber T; Lang A
    J Bone Miner Res; 2021 Jun; 36(6):1189-1201. PubMed ID: 33534144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stem cell-derived exosomes: A promising strategy for fracture healing.
    Hao ZC; Lu J; Wang SZ; Wu H; Zhang YT; Xu SG
    Cell Prolif; 2017 Oct; 50(5):. PubMed ID: 28741758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone mesenchymal stem cells stimulation by magnetic nanoparticles and a static magnetic field: release of exosomal miR-1260a improves osteogenesis and angiogenesis.
    Wu D; Chang X; Tian J; Kang L; Wu Y; Liu J; Wu X; Huang Y; Gao B; Wang H; Qiu G; Wu Z
    J Nanobiotechnology; 2021 Jul; 19(1):209. PubMed ID: 34256779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomaterials Regulating Bone Hematoma for Osteogenesis.
    Yang Y; Xiao Y
    Adv Healthc Mater; 2020 Dec; 9(23):e2000726. PubMed ID: 32691989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supercritical CO
    Li S; Song C; Yang S; Yu W; Zhang W; Zhang G; Xi Z; Lu E
    Acta Biomater; 2019 Aug; 94():253-267. PubMed ID: 31154054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coating biopolymer nanofibers with carbon nanotubes accelerates tissue healing and bone regeneration through orchestrated cell- and tissue-regulatory responses.
    Patel KD; Kim TH; Mandakhbayar N; Singh RK; Jang JH; Lee JH; Kim HW
    Acta Biomater; 2020 May; 108():97-110. PubMed ID: 32165193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration.
    Mao L; Xia L; Chang J; Liu J; Jiang L; Wu C; Fang B
    Acta Biomater; 2017 Oct; 61():217-232. PubMed ID: 28807800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A triple-coated ligament graft to facilitate ligament-bone healing by inhibiting fibrogenesis and promoting osteogenesis.
    Li Y; Guo X; Dong S; Zhu T; Chen Y; Zhao S; Xie G; Jiang J; He H; Liu C; Zhao J
    Acta Biomater; 2020 Oct; 115():160-175. PubMed ID: 32791348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential.
    Ding H; Gao YS; Wang Y; Hu C; Sun Y; Zhang C
    Stem Cells Dev; 2014 May; 23(9):990-1000. PubMed ID: 24328551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal regulation of angiogenesis/osteogenesis emulating natural bone healing cascade for vascularized bone formation.
    Zhou X; Chen J; Sun H; Wang F; Wang Y; Zhang Z; Teng W; Ye Y; Huang D; Zhang W; Mo X; Liu A; Lin P; Wu Y; Tao H; Yu X; Ye Z
    J Nanobiotechnology; 2021 Dec; 19(1):420. PubMed ID: 34906152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effects of Calcitonin Gene-Related Peptide on Bone Homeostasis and Regeneration.
    Xu J; Wang J; Chen X; Li Y; Mi J; Qin L
    Curr Osteoporos Rep; 2020 Dec; 18(6):621-632. PubMed ID: 33030684
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiogenic and osteogenic effects of flavonoids in bone regeneration.
    Shanmugavadivu A; Balagangadharan K; Selvamurugan N
    Biotechnol Bioeng; 2022 Sep; 119(9):2313-2330. PubMed ID: 35718883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved.
    Xiao D; Zhang J; Zhang C; Barbieri D; Yuan H; Moroni L; Feng G
    Acta Biomater; 2020 Apr; 106():22-33. PubMed ID: 31926336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The osteogenic-angiogenic interface: novel insights into the biology of bone formation and fracture repair.
    Towler DA
    Curr Osteoporos Rep; 2008 Jun; 6(2):67-71. PubMed ID: 18778566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of cellular and molecular components of a hematoma at early stage of bone healing.
    Shiu HT; Leung PC; Ko CH
    J Tissue Eng Regen Med; 2018 Apr; 12(4):e1911-e1925. PubMed ID: 29207216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Categorising bone defect hematomas - Enhance early bone healing.
    Wang X; Zhang Y; Ji W; Ao J
    Med Hypotheses; 2018 Apr; 113():77-80. PubMed ID: 29523301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MiR-140-5p promotes osteogenic differentiation of mouse embryonic bone marrow mesenchymal stem cells and post-fracture healing of mice.
    Jiao J; Feng G; Wu M; Wang Y; Li R; Liu J
    Cell Biochem Funct; 2020 Dec; 38(8):1152-1160. PubMed ID: 33047358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kefir peptides promote osteogenic differentiation to enhance bone fracture healing in rats.
    Lai JC; Li HP; Chang GR; Lan YW; Chen YH; Tseng YS; Tu MY; Chen CF; Chen HL; Chen CM
    Life Sci; 2022 Dec; 310():121090. PubMed ID: 36257457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.