BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 35442696)

  • 1. Flavoprotein Photochemistry: Fundamental Processes and Photocatalytic Perspectives.
    Zhuang B; Liebl U; Vos MH
    J Phys Chem B; 2022 May; 126(17):3199-3207. PubMed ID: 35442696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast photooxidation of protein-bound anionic flavin radicals.
    Zhuang B; Ramodiharilafy R; Liebl U; Aleksandrov A; Vos MH
    Proc Natl Acad Sci U S A; 2022 Feb; 119(8):. PubMed ID: 35181610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-mediated reduction of flavoproteins with flavins as catalysts.
    Massey V; Stankovich M; Hemmerich P
    Biochemistry; 1978 Jan; 17(1):1-8. PubMed ID: 618535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in flavin and flavoprotein optical spectroscopy.
    Stanley RJ
    Antioxid Redox Signal; 2001 Oct; 3(5):847-66. PubMed ID: 11761332
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photogeneration and reactivity of flavin anionic semiquinone in a bifurcating electron transfer flavoprotein.
    Duan HD; Khan SA; Miller AF
    Biochim Biophys Acta Bioenerg; 2021 Jul; 1862(7):148415. PubMed ID: 33727071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional interactions in cytochrome P450BM3. Evidence that NADP(H) binding controls redox potentials of the flavin cofactors.
    Murataliev MB; Feyereisen R
    Biochemistry; 2000 Oct; 39(41):12699-707. PubMed ID: 11027150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The intraflavin hydrogen bond in human electron transfer flavoprotein modulates redox potentials and may participate in electron transfer.
    Dwyer TM; Mortl S; Kemter K; Bacher A; Fauq A; Frerman FE
    Biochemistry; 1999 Jul; 38(30):9735-45. PubMed ID: 10423253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoactivation mechanisms of flavin-binding photoreceptors revealed through ultrafast spectroscopy and global analysis methods.
    Mathes T; van Stokkum IH; Kennis JT
    Methods Mol Biol; 2014; 1146():401-42. PubMed ID: 24764100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What makes the difference between a cryptochrome and DNA photolyase? A spectroelectrochemical comparison of the flavin redox transitions.
    Balland V; Byrdin M; Eker AP; Ahmad M; Brettel K
    J Am Chem Soc; 2009 Jan; 131(2):426-7. PubMed ID: 19140781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation and function of flavin anion radical in cryptochrome 1 blue-light photoreceptor of monarch butterfly.
    Song SH; Oztürk N; Denaro TR; Arat NO; Kao YT; Zhu H; Zhong D; Reppert SM; Sancar A
    J Biol Chem; 2007 Jun; 282(24):17608-12. PubMed ID: 17459876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deflavination and reconstitution of flavoproteins.
    Hefti MH; Vervoort J; van Berkel WJ
    Eur J Biochem; 2003 Nov; 270(21):4227-42. PubMed ID: 14622288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational spectroscopy, dynamics, and photochemistry of photosensory flavoproteins.
    Domratcheva T; Udvarhelyi A; Shahi AR
    Methods Mol Biol; 2014; 1146():191-228. PubMed ID: 24764094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The functions of the flavin contact residues, alphaArg249 and betaTyr16, in human electron transfer flavoprotein.
    Dwyer TM; Zhang L; Muller M; Marrugo F; Frerman F
    Biochim Biophys Acta; 1999 Aug; 1433(1-2):139-52. PubMed ID: 10446367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction of reduced flavins and flavoproteins with diphenyliodonium chloride.
    Chakraborty S; Massey V
    J Biol Chem; 2002 Nov; 277(44):41507-16. PubMed ID: 12186866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox modulation of flavin and tyrosine determines photoinduced proton-coupled electron transfer and photoactivation of BLUF photoreceptors.
    Mathes T; van Stokkum IH; Stierl M; Kennis JT
    J Biol Chem; 2012 Sep; 287(38):31725-38. PubMed ID: 22833672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron-sulfur flavoenzymes: the added value of making the most ancient redox cofactors and the versatile flavins work together.
    Vanoni MA
    Open Biol; 2021 May; 11(5):210010. PubMed ID: 33947244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NMR spectroscopy on flavins and flavoproteins.
    Müller F
    Methods Mol Biol; 2014; 1146():229-306. PubMed ID: 24764095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectro-temporal characterization of the photoactivation mechanism of two new oxidized cryptochrome/photolyase photoreceptors.
    Brazard J; Usman A; Lacombat F; Ley C; Martin MM; Plaza P; Mony L; Heijde M; Zabulon G; Bowler C
    J Am Chem Soc; 2010 Apr; 132(13):4935-45. PubMed ID: 20222748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Classification of the mechanisms of photoinduced electron transfer from aromatic amino acids to the excited flavins in flavoproteins.
    Tanaka F; Lugsanangarm K; Nunthaboot N; Nueangaudom A; Pianwanit S; Kokpol S; Taniguchi S; Chosrowjan H
    Phys Chem Chem Phys; 2015 Jul; 17(26):16813-25. PubMed ID: 26058866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into the enzymatic formation, chemical features, and biological role of the flavin-N5-oxide.
    Saleem-Batcha R; Teufel R
    Curr Opin Chem Biol; 2018 Dec; 47():47-53. PubMed ID: 30165331
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.