These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 35443012)

  • 21. [Study of photosynthetic characteristics of transgenic barley based on reflectance of single leaf].
    Sun CX; Yuan F; Zhang YL; Chen ZH; Chen LJ; Wu ZJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jan; 32(1):204-8. PubMed ID: 22497160
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of plant leaf phosphorus content at different growth stages based on hyperspectral reflectance.
    Siedliska A; Baranowski P; Pastuszka-Woźniak J; Zubik M; Krzyszczak J
    BMC Plant Biol; 2021 Jan; 21(1):28. PubMed ID: 33413120
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unmasking Novel Loci for Internal Phosphorus Utilization Efficiency in Rice Germplasm through Genome-Wide Association Analysis.
    Wissuwa M; Kondo K; Fukuda T; Mori A; Rose MT; Pariasca-Tanaka J; Kretzschmar T; Haefele SM; Rose TJ
    PLoS One; 2015; 10(4):e0124215. PubMed ID: 25923470
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves.
    Gitelson AA; Gritz Y; Merzlyak MN
    J Plant Physiol; 2003 Mar; 160(3):271-82. PubMed ID: 12749084
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimal waveband identification for estimation of leaf area index of paddy rice.
    Wang FM; Huang JF; Zhou QF; Wang XZ
    J Zhejiang Univ Sci B; 2008 Dec; 9(12):953-63. PubMed ID: 19067463
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Narrow-waveband reflectance ratios for remote estimation of nitrogen status in cotton.
    Read JJ; Tarpley L; McKinion JM; Reddy KR
    J Environ Qual; 2002; 31(5):1442-52. PubMed ID: 12371160
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic variation and association mapping for 12 agronomic traits in indica rice.
    Lu Q; Zhang M; Niu X; Wang S; Xu Q; Feng Y; Wang C; Deng H; Yuan X; Yu H; Wang Y; Wei X
    BMC Genomics; 2015 Dec; 16():1067. PubMed ID: 26673149
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-wide association study of rice (Oryza sativa L.) leaf traits with a high-throughput leaf scorer.
    Yang W; Guo Z; Huang C; Wang K; Jiang N; Feng H; Chen G; Liu Q; Xiong L
    J Exp Bot; 2015 Sep; 66(18):5605-15. PubMed ID: 25796084
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [An Analysis of the Spectrums between Different Canopy Structures Based on Hyperion Hyperspectral Data in a Temperate Forest of Northeast China].
    Yu QZ; Wang SQ; Huang K; Zhou L; Chen DC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jul; 35(7):1980-5. PubMed ID: 26717763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Based on machine learning algorithms for estimating leaf phosphorus concentration of rice using optimized spectral indices and continuous wavelet transform.
    Zhang Y; Wang T; Li Z; Wang T; Cao N
    Front Plant Sci; 2023; 14():1185915. PubMed ID: 37304713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In situ hyperspectral data analysis for pigment content estimation of rice leaves.
    Cheng Q; Huang JF; Wang XZ; Wang RC
    J Zhejiang Univ Sci; 2003; 4(6):727-33. PubMed ID: 14566990
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation model and its trade-off strategy of Mangifera persiciforma Colletotrichum gloeosporioides degree based on leaf reflection spectrum.
    Zhu J; Cao Y; Yao J; He W; Guo X; Zhao J; Xu Q; Zhang X; Xu C
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):44288-44300. PubMed ID: 33847889
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reflectance variation within the in-chlorophyll centre waveband for robust retrieval of leaf chlorophyll content.
    Zhang J; Huang W; Zhou Q
    PLoS One; 2014; 9(11):e110812. PubMed ID: 25365207
    [TBL] [Abstract][Full Text] [Related]  

  • 34. OsPAP26 Encodes a Major Purple Acid Phosphatase and Regulates Phosphate Remobilization in Rice.
    Gao W; Lu L; Qiu W; Wang C; Shou H
    Plant Cell Physiol; 2017 May; 58(5):885-892. PubMed ID: 28371895
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spectral response of rice (Oryza sativa L.) leaves to Fe(2+) stress.
    Chi G; Chen X; Shi Y; Liu X
    Sci China C Life Sci; 2009 Aug; 52(8):747-53. PubMed ID: 19727593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimation of leaf nutrition status in degraded vegetation based on field survey and hyperspectral data.
    Peng Y; Zhang M; Xu Z; Yang T; Su Y; Zhou T; Wang H; Wang Y; Lin Y
    Sci Rep; 2020 Mar; 10(1):4361. PubMed ID: 32152356
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rice SPX6 negatively regulates the phosphate starvation response through suppression of the transcription factor PHR2.
    Zhong Y; Wang Y; Guo J; Zhu X; Shi J; He Q; Liu Y; Wu Y; Zhang L; Lv Q; Mao C
    New Phytol; 2018 Jul; 219(1):135-148. PubMed ID: 29658119
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transcriptome monitoring visualizes growth stage-dependent nutrient status dynamics in rice under field conditions.
    Takehisa H; Sato Y
    Plant J; 2019 Mar; 97(6):1048-1060. PubMed ID: 30481387
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High-throughput analysis of leaf physiological and chemical traits with VIS-NIR-SWIR spectroscopy: a case study with a maize diversity panel.
    Ge Y; Atefi A; Zhang H; Miao C; Ramamurthy RK; Sigmon B; Yang J; Schnable JC
    Plant Methods; 2019; 15():66. PubMed ID: 31391863
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hyperspectral leaf reflectance of Carpinus betulus L. saplings for urban air quality estimation.
    Brackx M; Van Wittenberghe S; Verhelst J; Scheunders P; Samson R
    Environ Pollut; 2017 Jan; 220(Pt A):159-167. PubMed ID: 27720547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.