These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 35443084)
1. Acid-in-Clay Electrolyte for Wide-Temperature-Range and Long-Cycle Proton Batteries. Wang S; Jiang H; Dong Y; Clarkson D; Zhu H; Settens CM; Ren Y; Nguyen T; Han F; Fan W; Kim SY; Zhang J; Xue W; Sandstrom SK; Xu G; Tekoglu E; Li M; Deng S; Liu Q; Greenbaum SG; Ji X; Gao T; Li J Adv Mater; 2022 Jun; 34(23):e2202063. PubMed ID: 35443084 [TBL] [Abstract][Full Text] [Related]
2. An Organic Acid-Alkali Coregulated Ionic Liquid Electrolyte Enabling Wide-Temperature-Range Proton Battery. Ma H; Yang M; Li R; Zheng L; Hao Y; Li H; Li M; Zhao G; Wang Z; Wang B; Hu M; Yang J Small; 2024 Oct; ():e2405004. PubMed ID: 39370658 [TBL] [Abstract][Full Text] [Related]
3. Poly(vinylene carbonate)-Based Composite Polymer Electrolyte with Enhanced Interfacial Stability To Realize High-Performance Room-Temperature Solid-State Sodium Batteries. Chen S; Che H; Feng F; Liao J; Wang H; Yin Y; Ma ZF ACS Appl Mater Interfaces; 2019 Nov; 11(46):43056-43065. PubMed ID: 31660726 [TBL] [Abstract][Full Text] [Related]
4. Quasi-Solid Electrolytes for High Temperature Lithium Ion Batteries. Kalaga K; Rodrigues MT; Gullapalli H; Babu G; Arava LM; Ajayan PM ACS Appl Mater Interfaces; 2015 Nov; 7(46):25777-83. PubMed ID: 26535786 [TBL] [Abstract][Full Text] [Related]
5. Combining Superionic Conduction and Favorable Decomposition Products in the Crystalline Lithium-Boron-Sulfur System: A New Mechanism for Stabilizing Solid Li-Ion Electrolytes. Sendek AD; Antoniuk ER; Cubuk ED; Ransom B; Francisco BE; Buettner-Garrett J; Cui Y; Reed EJ ACS Appl Mater Interfaces; 2020 Aug; 12(34):37957-37966. PubMed ID: 32700896 [TBL] [Abstract][Full Text] [Related]
6. A polyethylene oxide/metal-organic framework composite solid electrolyte with uniform Li deposition and stability for lithium anode by immobilizing anions. Dong R; Zheng J; Yuan J; Li Y; Zhang T; Liu Y; Liu Y; Sun Y; Zhong B; Chen Y; Wu Z; Guo X J Colloid Interface Sci; 2022 Aug; 620():47-56. PubMed ID: 35405565 [TBL] [Abstract][Full Text] [Related]
8. Silica-assisted cross-linked polymer electrolyte membrane with high electrochemical stability for lithium-ion batteries. Li C; Huang Y; Feng X; Zhang Z; Gao H; Huang J J Colloid Interface Sci; 2021 Jul; 594():1-8. PubMed ID: 33744729 [TBL] [Abstract][Full Text] [Related]
9. Acidified Nitrogen Self-Doped Porous Carbon with Superprotonic Conduction for Applications in Solid-State Proton Battery. Zhao FJ; Zhu Y; Chen Y; Ren XY; Dong H; Zhang H; Ren Q; Luo HB; Zou Y; Ren XM Small; 2024 Feb; 20(8):e2305765. PubMed ID: 37821399 [TBL] [Abstract][Full Text] [Related]
10. Nickel phosphate nanorod-enhanced polyethylene oxide-based composite polymer electrolytes for solid-state lithium batteries. Wu Z; Xie Z; Yoshida A; Wang J; Yu T; Wang Z; Hao X; Abudula A; Guan G J Colloid Interface Sci; 2020 Apr; 565():110-118. PubMed ID: 31935584 [TBL] [Abstract][Full Text] [Related]
11. Flexible Asymmetric Organic-Inorganic Composite Solid-State Electrolyte Based on PI Membrane for Ambient Temperature Solid-State Lithium Metal Batteries. Yang R; Zhang Z; Zhang Q; Shi J; Kang S; Fan Y Front Chem; 2022; 10():855800. PubMed ID: 35402381 [TBL] [Abstract][Full Text] [Related]
12. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries. Wu JF; Pang WK; Peterson VK; Wei L; Guo X ACS Appl Mater Interfaces; 2017 Apr; 9(14):12461-12468. PubMed ID: 28332828 [TBL] [Abstract][Full Text] [Related]
13. Room-Temperature Stable Inorganic Halide Perovskite as Potential Solid Electrolyte for Chloride Ion Batteries. Xia T; Li Y; Huang L; Ji W; Yang M; Zhao X ACS Appl Mater Interfaces; 2020 Apr; 12(16):18634-18641. PubMed ID: 32233446 [TBL] [Abstract][Full Text] [Related]
14. A Fluoride-Ion-Conducting Solid Electrolyte with Both High Conductivity and Excellent Electrochemical Stability. Wang J; Hao J; Duan C; Wang X; Wang K; Ma C Small; 2022 Feb; 18(5):e2104508. PubMed ID: 34837307 [TBL] [Abstract][Full Text] [Related]
15. Antiperovskite Electrolytes for Solid-State Batteries. Xia W; Zhao Y; Zhao F; Adair K; Zhao R; Li S; Zou R; Zhao Y; Sun X Chem Rev; 2022 Feb; 122(3):3763-3819. PubMed ID: 35015520 [TBL] [Abstract][Full Text] [Related]
16. Liquid-like Poly(ionic liquid) as Electrolyte for Thermally Stable Lithium-Ion Battery. Zhang Z; Zhang Y; Du B; Peng Z ACS Omega; 2018 Sep; 3(9):10564-10571. PubMed ID: 31459180 [TBL] [Abstract][Full Text] [Related]
17. Integrated Interface Strategy toward Room Temperature Solid-State Lithium Batteries. Ju J; Wang Y; Chen B; Ma J; Dong S; Chai J; Qu H; Cui L; Wu X; Cui G ACS Appl Mater Interfaces; 2018 Apr; 10(16):13588-13597. PubMed ID: 29620848 [TBL] [Abstract][Full Text] [Related]
18. Structural and electrical properties of NASICON type solid electrolyte nanoscaled glass-ceramic powder by mechanical milling for thin film batteries. Patil V; Patil A; Yoon SJ; Choi JW J Nanosci Nanotechnol; 2013 May; 13(5):3665-8. PubMed ID: 23858924 [TBL] [Abstract][Full Text] [Related]
19. Ionic Conductivity and Cycling Stability Improvement of PVDF/Nano-Clay Using PVP as Polymer Electrolyte Membranes for LiFePOâ‚„ Batteries. Dyartanti ER; Purwanto A; Widiasa IN; Susanto H Membranes (Basel); 2018 Jul; 8(3):. PubMed ID: 29966396 [TBL] [Abstract][Full Text] [Related]