These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
263 related articles for article (PubMed ID: 35443934)
1. Eliminating predictable DNA off-target effects of cytosine base editor by using dual guiders including sgRNA and TALE. Zhou J; Liu Y; Wei Y; Zheng S; Gou S; Chen T; Yang Y; Lan T; Chen M; Liao Y; Zhang Q; Tang C; Liu Y; Wu Y; Peng X; Gao M; Wang J; Zhang K; Lai L; Zou Q Mol Ther; 2022 Jul; 30(7):2443-2451. PubMed ID: 35443934 [TBL] [Abstract][Full Text] [Related]
2. High-Fidelity Cytosine Base Editing in a GC-Rich Corynebacterium glutamicum with Reduced DNA Off-Target Editing Effects. Heo YB; Hwang GH; Kang SW; Bae S; Woo HM Microbiol Spectr; 2022 Dec; 10(6):e0376022. PubMed ID: 36374037 [TBL] [Abstract][Full Text] [Related]
3. Improved plant cytosine base editors with high editing activity, purity, and specificity. Ren Q; Sretenovic S; Liu G; Zhong Z; Wang J; Huang L; Tang X; Guo Y; Liu L; Wu Y; Zhou J; Zhao Y; Yang H; He Y; Liu S; Yin D; Mayorga R; Zheng X; Zhang T; Qi Y; Zhang Y Plant Biotechnol J; 2021 Oct; 19(10):2052-2068. PubMed ID: 34042262 [TBL] [Abstract][Full Text] [Related]
4. A modified glycosylase base editor without predictable DNA off-target effects. Lian M; Chen T; Chen M; Peng X; Yang Y; Luo X; Chi Y; Wang J; Tang C; Zhou X; Zhang K; Qin C; Lai L; Zhou J; Zou Q FEBS Lett; 2024 Oct; 598(20):2557-2565. PubMed ID: 38946058 [TBL] [Abstract][Full Text] [Related]
5. Improving the Precision of Base Editing by Bubble Hairpin Single Guide RNA. Hu Z; Wang Y; Liu Q; Qiu Y; Zhong Z; Li K; Li W; Deng Z; Sun Y mBio; 2021 Apr; 12(2):. PubMed ID: 33879582 [TBL] [Abstract][Full Text] [Related]
6. Off-Target Editing by CRISPR-Guided DNA Base Editors. Park S; Beal PA Biochemistry; 2019 Sep; 58(36):3727-3734. PubMed ID: 31433621 [TBL] [Abstract][Full Text] [Related]
7. CRISPR-CBEI: a Designing and Analyzing Tool Kit for Cytosine Base Editor-Mediated Gene Inactivation. Yu H; Wu Z; Chen X; Ji Q; Tao S mSystems; 2020 Sep; 5(5):. PubMed ID: 32963098 [TBL] [Abstract][Full Text] [Related]
8. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Grünewald J; Zhou R; Iyer S; Lareau CA; Garcia SP; Aryee MJ; Joung JK Nat Biotechnol; 2019 Sep; 37(9):1041-1048. PubMed ID: 31477922 [TBL] [Abstract][Full Text] [Related]
9. Evolution of an adenine base editor into a small, efficient cytosine base editor with low off-target activity. Neugebauer ME; Hsu A; Arbab M; Krasnow NA; McElroy AN; Pandey S; Doman JL; Huang TP; Raguram A; Banskota S; Newby GA; Tolar J; Osborn MJ; Liu DR Nat Biotechnol; 2023 May; 41(5):673-685. PubMed ID: 36357719 [TBL] [Abstract][Full Text] [Related]
10. Rationally Designed APOBEC3B Cytosine Base Editors with Improved Specificity. Jin S; Fei H; Zhu Z; Luo Y; Liu J; Gao S; Zhang F; Chen YH; Wang Y; Gao C Mol Cell; 2020 Sep; 79(5):728-740.e6. PubMed ID: 32721385 [TBL] [Abstract][Full Text] [Related]
11. Efficient CRISPR-Cas9 based cytosine base editors for phytopathogenic bacteria. Li C; Wang L; Cseke LJ; Vasconcelos F; Huguet-Tapia JC; Gassmann W; Pauwels L; White FF; Dong H; Yang B Commun Biol; 2023 Jan; 6(1):56. PubMed ID: 36646768 [TBL] [Abstract][Full Text] [Related]
12. TadA orthologs enable both cytosine and adenine editing of base editors. Zhang S; Yuan B; Cao J; Song L; Chen J; Qiu J; Qiu Z; Zhao XM; Chen J; Cheng TL Nat Commun; 2023 Jan; 14(1):414. PubMed ID: 36702837 [TBL] [Abstract][Full Text] [Related]
13. A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Zuo E; Sun Y; Yuan T; He B; Zhou C; Ying W; Liu J; Wei W; Zeng R; Li Y; Yang H Nat Methods; 2020 Jun; 17(6):600-604. PubMed ID: 32424272 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of base editors with anti-deaminases derived from viruses. Liu Z; Chen S; Lai L; Li Z Nat Commun; 2022 Feb; 13(1):597. PubMed ID: 35105899 [TBL] [Abstract][Full Text] [Related]
15. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Chen L; Zhu B; Ru G; Meng H; Yan Y; Hong M; Zhang D; Luan C; Zhang S; Wu H; Gao H; Bai S; Li C; Ding R; Xue N; Lei Z; Chen Y; Guan Y; Siwko S; Cheng Y; Song G; Wang L; Yi C; Liu M; Li D Nat Biotechnol; 2023 May; 41(5):663-672. PubMed ID: 36357717 [TBL] [Abstract][Full Text] [Related]
16. Current Status and Challenges of DNA Base Editing Tools. Jeong YK; Song B; Bae S Mol Ther; 2020 Sep; 28(9):1938-1952. PubMed ID: 32763143 [TBL] [Abstract][Full Text] [Related]
17. Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Doman JL; Raguram A; Newby GA; Liu DR Nat Biotechnol; 2020 May; 38(5):620-628. PubMed ID: 32042165 [TBL] [Abstract][Full Text] [Related]
18. Cytosine base editing systems with minimized off-target effect and molecular size. Li A; Mitsunobu H; Yoshioka S; Suzuki T; Kondo A; Nishida K Nat Commun; 2022 Aug; 13(1):4531. PubMed ID: 35941130 [TBL] [Abstract][Full Text] [Related]
19. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Grünewald J; Zhou R; Garcia SP; Iyer S; Lareau CA; Aryee MJ; Joung JK Nature; 2019 May; 569(7756):433-437. PubMed ID: 30995674 [TBL] [Abstract][Full Text] [Related]
20. Engineering of cytosine base editors with DNA damage minimization and editing scope diversification. Yuan B; Zhang S; Song L; Chen J; Cao J; Qiu J; Qiu Z; Chen J; Zhao XM; Cheng TL Nucleic Acids Res; 2023 Nov; 51(20):e105. PubMed ID: 37843111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]