These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 35444116)

  • 41. Bayesian dose-finding designs for combination of molecularly targeted agents assuming partial stochastic ordering.
    Guo B; Li Y
    Stat Med; 2015 Feb; 34(5):859-75. PubMed ID: 25413162
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bayesian dose-finding phase I trial design incorporating pharmacokinetic assessment in the field of oncology.
    Takeda K; Komatsu K; Morita S
    Pharm Stat; 2018 Nov; 17(6):725-733. PubMed ID: 30066356
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bayesian dose-finding phase I trial design incorporating historical data from a preceding trial.
    Takeda K; Morita S
    Pharm Stat; 2018 Jul; 17(4):372-382. PubMed ID: 29372582
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Bayesian adaptive Phase I-II clinical trial for evaluating efficacy and toxicity with delayed outcomes.
    Koopmeiners JS; Modiano J
    Clin Trials; 2014 Feb; 11(1):38-48. PubMed ID: 24082004
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimal dose escalation methods using deep reinforcement learning in phase I oncology trials.
    Matsuura K; Sakamaki K; Honda J; Sozu T
    J Biopharm Stat; 2023 Sep; 33(5):639-652. PubMed ID: 36717962
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controlled amplification in oncology dose-finding trials.
    Dehbi HM; O'Quigley J; Iasonos A
    Contemp Clin Trials; 2023 Feb; 125():107021. PubMed ID: 36526255
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Incorporating historical information to improve phase I clinical trials.
    Zhou Y; Lee JJ; Wang S; Bailey S; Yuan Y
    Pharm Stat; 2021 Nov; 20(6):1017-1034. PubMed ID: 33793044
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bayesian interval-based oncology dose-finding design with repeated quasi-continuous toxicity model.
    Zhao D; Zhu J; Wang L
    Contemp Clin Trials; 2021 Mar; 102():106265. PubMed ID: 33418097
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bayesian Optimal Interval Design: A Simple and Well-Performing Design for Phase I Oncology Trials.
    Yuan Y; Hess KR; Hilsenbeck SG; Gilbert MR
    Clin Cancer Res; 2016 Sep; 22(17):4291-301. PubMed ID: 27407096
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Flexible use of copula-type model for dose-finding in drug combination clinical trials.
    Hashizume K; Tshuchida J; Sozu T
    Biometrics; 2022 Dec; 78(4):1651-1661. PubMed ID: 34181760
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Bayesian design for finding optimal biological dose with mixed types of responses of toxicity and efficacy.
    Zhang D; Xu J
    Contemp Clin Trials; 2023 Apr; 127():107113. PubMed ID: 36758934
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Keyboard design for phase I drug-combination trials.
    Pan H; Lin R; Zhou Y; Yuan Y
    Contemp Clin Trials; 2020 May; 92():105972. PubMed ID: 32151751
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Repeated measures dose-finding design with time-trend detection in the presence of correlated toxicity data.
    Yin J; Paoletti X; Sargent DJ; Mandrekar SJ
    Clin Trials; 2017 Dec; 14(6):611-620. PubMed ID: 28764555
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adaptive designs for identifying optimal biological dose for molecularly targeted agents.
    Zang Y; Lee JJ; Yuan Y
    Clin Trials; 2014 Jun; 11(3):319-327. PubMed ID: 24844841
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CFO: Calibration-free odds design for phase I/II clinical trials.
    Jin H; Yin G
    Stat Methods Med Res; 2022 Jun; 31(6):1051-1066. PubMed ID: 35238697
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Range and trend of expected toxicity level (ETL) in standard A + B designs: a report from the Children's Oncology Group.
    Chen Z; Krailo MD; Sun J; Azen SP;
    Contemp Clin Trials; 2009 Mar; 30(2):123-8. PubMed ID: 19000782
    [TBL] [Abstract][Full Text] [Related]  

  • 57. BOIN-ETC: A Bayesian optimal interval design considering efficacy and toxicity to identify the optimal dose combinations.
    Kakizume T; Takeda K; Taguri M; Morita S
    Stat Methods Med Res; 2024 Apr; 33(4):716-727. PubMed ID: 38444354
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rendering the 3 + 3 Design to Rest: More Efficient Approaches to Oncology Dose-Finding Trials in the Era of Targeted Therapy.
    Nie L; Rubin EH; Mehrotra N; Pinheiro J; Fernandes LL; Roy A; Bailey S; de Alwis DP
    Clin Cancer Res; 2016 Jun; 22(11):2623-9. PubMed ID: 27250933
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Escalation with overdose control for phase I drug-combination trials.
    Shi Y; Yin G
    Stat Med; 2013 Nov; 32(25):4400-12. PubMed ID: 23630103
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modified isotonic regression based phase I/II clinical trial design identifying optimal biological dose.
    Qiu Y; Zhao Y; Liu H; Cao S; Zhang C; Zang Y
    Contemp Clin Trials; 2023 Apr; 127():107139. PubMed ID: 36870476
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.