BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 35444177)

  • 1. Heavy footprints of upper-ocean eddies on weakened Arctic sea ice in marginal ice zones.
    Manucharyan GE; Thompson AF
    Nat Commun; 2022 Apr; 13(1):2147. PubMed ID: 35444177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinning ice floes reveal intensification of mesoscale eddies in the western Arctic Ocean.
    Manucharyan GE; Lopez-Acosta R; Wilhelmus MM
    Sci Rep; 2022 Apr; 12(1):7070. PubMed ID: 35488008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport.
    Zhang Z; Liu Y; Qiu B; Luo Y; Cai W; Yuan Q; Liu Y; Zhang H; Liu H; Miao M; Zhang J; Zhao W; Tian J
    Nat Commun; 2023 Mar; 14(1):1335. PubMed ID: 36906683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regular network model for the sea ice-albedo feedback in the Arctic.
    Müller-Stoffels M; Wackerbauer R
    Chaos; 2011 Mar; 21(1):013111. PubMed ID: 21456825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delayed Antarctic sea-ice decline in high-resolution climate change simulations.
    Rackow T; Danilov S; Goessling HF; Hellmer HH; Sein DV; Semmler T; Sidorenko D; Jung T
    Nat Commun; 2022 Feb; 13(1):637. PubMed ID: 35110565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural variability of the Arctic Ocean sea ice during the present interglacial.
    de Vernal A; Hillaire-Marcel C; Le Duc C; Roberge P; Brice C; Matthiessen J; Spielhagen RF; Stein R
    Proc Natl Acad Sci U S A; 2020 Oct; 117(42):26069-26075. PubMed ID: 33020299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Is ice-rafted sediment in a North Pole marine record evidence for perennial sea-ice cover?
    Tremblay LB; Schmidt GA; Pfirman S; Newton R; DeRepentigny P
    Philos Trans A Math Phys Eng Sci; 2015 Oct; 373(2052):. PubMed ID: 26347534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arctic warming interrupts the Transpolar Drift and affects long-range transport of sea ice and ice-rafted matter.
    Krumpen T; Belter HJ; Boetius A; Damm E; Haas C; Hendricks S; Nicolaus M; Nöthig EM; Paul S; Peeken I; Ricker R; Stein R
    Sci Rep; 2019 Apr; 9(1):5459. PubMed ID: 30940829
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subsurface ocean flywheel of coupled climate variability in the Barents Sea hotspot of global warming.
    Schlichtholz P
    Sci Rep; 2019 Sep; 9(1):13692. PubMed ID: 31548604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms for low-frequency variability of summer Arctic sea ice extent.
    Zhang R
    Proc Natl Acad Sci U S A; 2015 Apr; 112(15):4570-5. PubMed ID: 25825758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced eddy activity in the Beaufort Gyre in response to sea ice loss.
    Armitage TWK; Manucharyan GE; Petty AA; Kwok R; Thompson AF
    Nat Commun; 2020 Feb; 11(1):761. PubMed ID: 32029737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increasing riverine heat influx triggers Arctic sea ice decline and oceanic and atmospheric warming.
    Park H; Watanabe E; Kim Y; Polyakov I; Oshima K; Zhang X; Kimball JS; Yang D
    Sci Adv; 2020 Nov; 6(45):. PubMed ID: 33158866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The phenology of Arctic Ocean surface warming.
    Steele M; Dickinson S
    J Geophys Res Oceans; 2016 Sep; 121(9):6847-6861. PubMed ID: 27867789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global warming leading to alarming recession of the Arctic sea-ice cover: Insights from remote sensing observations and model reanalysis.
    Kumar A; Yadav J; Mohan R
    Heliyon; 2020 Jul; 6(7):e04355. PubMed ID: 32775711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The emergence of modern sea ice cover in the Arctic Ocean.
    Knies J; Cabedo-Sanz P; Belt ST; Baranwal S; Fietz S; Rosell-Melé A
    Nat Commun; 2014 Nov; 5():5608. PubMed ID: 25429795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-temporal change and variability of Barents-Kara sea ice, in the Arctic: Ocean and atmospheric implications.
    Kumar A; Yadav J; Mohan R
    Sci Total Environ; 2021 Jan; 753():142046. PubMed ID: 32892004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Winter storms accelerate the demise of sea ice in the Atlantic sector of the Arctic Ocean.
    Graham RM; Itkin P; Meyer A; Sundfjord A; Spreen G; Smedsrud LH; Liston GE; Cheng B; Cohen L; Divine D; Fer I; Fransson A; Gerland S; Haapala J; Hudson SR; Johansson AM; King J; Merkouriadi I; Peterson AK; Provost C; Randelhoff A; Rinke A; Rösel A; Sennéchael N; Walden VP; Duarte P; Assmy P; Steen H; Granskog MA
    Sci Rep; 2019 Jun; 9(1):9222. PubMed ID: 31239470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local atmospheric response to warm mesoscale ocean eddies in the Kuroshio-Oyashio Confluence region.
    Sugimoto S; Aono K; Fukui S
    Sci Rep; 2017 Sep; 7(1):11871. PubMed ID: 28928408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrate supply and uptake in the Atlantic Arctic sea ice zone: seasonal cycle, mechanisms and drivers.
    Henley SF; Porter M; Hobbs L; Braun J; Guillaume-Castel R; Venables EJ; Dumont E; Cottier F
    Philos Trans A Math Phys Eng Sci; 2020 Oct; 378(2181):20190361. PubMed ID: 32862810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methane excess in Arctic surface water-triggered by sea ice formation and melting.
    Damm E; Rudels B; Schauer U; Mau S; Dieckmann G
    Sci Rep; 2015 Nov; 5():16179. PubMed ID: 26553610
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.