These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 35444335)
1. Factor Retention in Exploratory Factor Analysis With Missing Data. Goretzko D Educ Psychol Meas; 2022 Jun; 82(3):444-464. PubMed ID: 35444335 [TBL] [Abstract][Full Text] [Related]
2. Investigating Parallel Analysis in the Context of Missing Data: A Simulation Study Comparing Six Missing Data Methods. Goretzko D; Heumann C; Bühner M Educ Psychol Meas; 2020 Aug; 80(4):756-774. PubMed ID: 32616957 [TBL] [Abstract][Full Text] [Related]
3. Imputation of missing values of tumour stage in population-based cancer registration. Eisemann N; Waldmann A; Katalinic A BMC Med Res Methodol; 2011 Sep; 11():129. PubMed ID: 21929796 [TBL] [Abstract][Full Text] [Related]
4. [Simulation study on missing data imputation methods for longitudinal data in cohort studies]. Li YM; Zhao P; Yang YH; Wang JX; Yan H; Chen FY Zhonghua Liu Xing Bing Xue Za Zhi; 2021 Oct; 42(10):1889-1894. PubMed ID: 34814629 [No Abstract] [Full Text] [Related]
5. Factor Retention Using Machine Learning With Ordinal Data. Goretzko D; Bühner M Appl Psychol Meas; 2022 Jul; 46(5):406-421. PubMed ID: 35812814 [TBL] [Abstract][Full Text] [Related]
6. Missing-Data Handling Methods for Lifelogs-Based Wellness Index Estimation: Comparative Analysis With Panel Data. Kim KH; Kim KJ JMIR Med Inform; 2020 Dec; 8(12):e20597. PubMed ID: 33331831 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of missing data imputation methods for human osteometric measurements. Pang J; Liu X Am J Biol Anthropol; 2023 Aug; 181(4):666-676. PubMed ID: 37259623 [TBL] [Abstract][Full Text] [Related]
8. Missing data in bioarchaeology II: A test of ordinal and continuous data imputation. Wissler A; Blevins KE; Buikstra JE Am J Biol Anthropol; 2022 Nov; 179(3):349-364. PubMed ID: 36790608 [TBL] [Abstract][Full Text] [Related]
9. How handling missing data may impact conclusions: A comparison of six different imputation methods for categorical questionnaire data. Stavseth MR; Clausen T; Røislien J SAGE Open Med; 2019; 7():2050312118822912. PubMed ID: 30671242 [TBL] [Abstract][Full Text] [Related]
10. Comparison of random forest and parametric imputation models for imputing missing data using MICE: a CALIBER study. Shah AD; Bartlett JW; Carpenter J; Nicholas O; Hemingway H Am J Epidemiol; 2014 Mar; 179(6):764-74. PubMed ID: 24589914 [TBL] [Abstract][Full Text] [Related]
11. Evaluating the Performances of Missing Data Handling Methods in Ability Estimation From Sparse Data. Xiao J; Bulut O Educ Psychol Meas; 2020 Oct; 80(5):932-954. PubMed ID: 32855565 [TBL] [Abstract][Full Text] [Related]
12. Missing data imputation via the expectation-maximization algorithm can improve principal component analysis aimed at deriving biomarker profiles and dietary patterns. Malan L; Smuts CM; Baumgartner J; Ricci C Nutr Res; 2020 Mar; 75():67-76. PubMed ID: 32035304 [TBL] [Abstract][Full Text] [Related]
13. Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index? Simons CL; Rivero-Arias O; Yu LM; Simon J Qual Life Res; 2015 Apr; 24(4):805-15. PubMed ID: 25471286 [TBL] [Abstract][Full Text] [Related]
14. Multiple imputation for patient reported outcome measures in randomised controlled trials: advantages and disadvantages of imputing at the item, subscale or composite score level. Rombach I; Gray AM; Jenkinson C; Murray DW; Rivero-Arias O BMC Med Res Methodol; 2018 Aug; 18(1):87. PubMed ID: 30153796 [TBL] [Abstract][Full Text] [Related]
15. Self-Training With Quantile Errors for Multivariate Missing Data Imputation for Regression Problems in Electronic Medical Records: Algorithm Development Study. Gwon H; Ahn I; Kim Y; Kang HJ; Seo H; Cho HN; Choi H; Jun TJ; Kim YH JMIR Public Health Surveill; 2021 Oct; 7(10):e30824. PubMed ID: 34643539 [TBL] [Abstract][Full Text] [Related]
16. A comparison of different methods to handle missing data in the context of propensity score analysis. Choi J; Dekkers OM; le Cessie S Eur J Epidemiol; 2019 Jan; 34(1):23-36. PubMed ID: 30341708 [TBL] [Abstract][Full Text] [Related]
17. Heckman imputation models for binary or continuous MNAR outcomes and MAR predictors. Galimard JE; Chevret S; Curis E; Resche-Rigon M BMC Med Res Methodol; 2018 Aug; 18(1):90. PubMed ID: 30170561 [TBL] [Abstract][Full Text] [Related]
18. Predictors of clinical outcome in pediatric oligodendroglioma: meta-analysis of individual patient data and multiple imputation. Wang KY; Vankov ER; Lin DDM J Neurosurg Pediatr; 2018 Feb; 21(2):153-163. PubMed ID: 29192869 [TBL] [Abstract][Full Text] [Related]
19. Hierarchical imputation of systematically and sporadically missing data: An approximate Bayesian approach using chained equations. Jolani S Biom J; 2018 Mar; 60(2):333-351. PubMed ID: 28990686 [TBL] [Abstract][Full Text] [Related]
20. A Workflow for Missing Values Imputation of Untargeted Metabolomics Data. Faquih T; van Smeden M; Luo J; le Cessie S; Kastenmüller G; Krumsiek J; Noordam R; van Heemst D; Rosendaal FR; van Hylckama Vlieg A; Willems van Dijk K; Mook-Kanamori DO Metabolites; 2020 Nov; 10(12):. PubMed ID: 33256233 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]