These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 35444518)

  • 1. Comparison of Resting-State Functional MRI Methods for Characterizing Brain Dynamics.
    Maltbie E; Yousefi B; Zhang X; Kashyap A; Keilholz S
    Front Neural Circuits; 2022; 16():681544. PubMed ID: 35444518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states.
    Shakil S; Lee CH; Keilholz SD
    Neuroimage; 2016 Jun; 133():111-128. PubMed ID: 26952197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic resting state fMRI analysis in mice reveals a set of Quasi-Periodic Patterns and illustrates their relationship with the global signal.
    Belloy ME; Naeyaert M; Abbas A; Shah D; Vanreusel V; van Audekerke J; Keilholz SD; Keliris GA; Van der Linden A; Verhoye M
    Neuroimage; 2018 Oct; 180(Pt B):463-484. PubMed ID: 29454935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity.
    Thompson GJ; Pan WJ; Magnuson ME; Jaeger D; Keilholz SD
    Neuroimage; 2014 Jan; 84():1018-31. PubMed ID: 24071524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quasi-periodic patterns of intrinsic brain activity in individuals and their relationship to global signal.
    Yousefi B; Shin J; Schumacher EH; Keilholz SD
    Neuroimage; 2018 Feb; 167():297-308. PubMed ID: 29175200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creative tempo: Spatiotemporal dynamics of the default mode network in improvisational musicians.
    Watters H; Fazili A; Daley L; Belden A; LaGrow TJ; Bolt T; Loui P; Keilholz S
    bioRxiv; 2024 Apr; ():. PubMed ID: 38645080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved dynamic connection detection power in estimated dynamic functional connectivity considering multivariate dependencies between brain regions.
    Maleki Balajoo S; Asemani D; Khadem A; Soltanian-Zadeh H
    Hum Brain Mapp; 2020 Oct; 41(15):4264-4287. PubMed ID: 32643845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quasi-periodic patterns contribute to functional connectivity in the brain.
    Abbas A; Belloy M; Kashyap A; Billings J; Nezafati M; Schumacher EH; Keilholz S
    Neuroimage; 2019 May; 191():193-204. PubMed ID: 30753928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different dynamic resting state fMRI patterns are linked to different frequencies of neural activity.
    Thompson GJ; Pan WJ; Keilholz SD
    J Neurophysiol; 2015 Jul; 114(1):114-24. PubMed ID: 26041826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resting-State Co-activation Patterns as Promising Candidates for Prediction of Alzheimer's Disease in Aged Mice.
    Adhikari MH; Belloy ME; Van der Linden A; Keliris GA; Verhoye M
    Front Neural Circuits; 2020; 14():612529. PubMed ID: 33551755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wavelet-based clustering of resting state MRI data in the rat.
    Medda A; Hoffmann L; Magnuson M; Thompson G; Pan WJ; Keilholz S
    Magn Reson Imaging; 2016 Jan; 34(1):35-43. PubMed ID: 26481903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-activation pattern alterations in autism spectrum disorder-A volume-wise hierarchical clustering fMRI study.
    Paakki JJ; Rahko JS; Kotila A; Mattila ML; Miettunen H; Hurtig TM; Jussila KK; Kuusikko-Gauffin S; Moilanen IK; Tervonen O; Kiviniemi VJ
    Brain Behav; 2021 Jun; 11(6):e02174. PubMed ID: 33998178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using multiband multi-echo imaging to improve the robustness and repeatability of co-activation pattern analysis for dynamic functional connectivity.
    Cohen AD; Chang C; Wang Y
    Neuroimage; 2021 Nov; 243():118555. PubMed ID: 34492293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tri-Clustering Dynamic Functional Network Connectivity Identifies Significant Schizophrenia Effects Across Multiple States in Distinct Subgroups of Individuals.
    Rahaman MA; Damaraju E; Turner JA; van Erp TGM; Mathalon D; Vaidya J; Muller B; Pearlson G; Calhoun VD
    Brain Connect; 2022 Feb; 12(1):61-73. PubMed ID: 34049447
    [No Abstract]   [Full Text] [Related]  

  • 15. Characterizing dynamic amplitude of low-frequency fluctuation and its relationship with dynamic functional connectivity: An application to schizophrenia.
    Fu Z; Tu Y; Di X; Du Y; Pearlson GD; Turner JA; Biswal BB; Zhang Z; Calhoun VD
    Neuroimage; 2018 Oct; 180(Pt B):619-631. PubMed ID: 28939432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using deep clustering to improve fMRI dynamic functional connectivity analysis.
    Spencer APC; Goodfellow M
    Neuroimage; 2022 Aug; 257():119288. PubMed ID: 35551991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the relationship between instantaneous phase synchrony and correlation-based sliding windows for time-resolved fMRI connectivity analysis.
    Pedersen M; Omidvarnia A; Zalesky A; Jackson GD
    Neuroimage; 2018 Nov; 181():85-94. PubMed ID: 29890326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficacy of different dynamic functional connectivity methods to capture cognitively relevant information.
    Xie H; Zheng CY; Handwerker DA; Bandettini PA; Calhoun VD; Mitra S; Gonzalez-Castillo J
    Neuroimage; 2019 Mar; 188():502-514. PubMed ID: 30576850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reorganization of resting-state brain network functional connectivity across human brain developmental stages.
    Singh P; Kumar Gandhi T; Kumar L
    Brain Res; 2023 Feb; 1800():148196. PubMed ID: 36463956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An average sliding window correlation method for dynamic functional connectivity.
    Vergara VM; Abrol A; Calhoun VD
    Hum Brain Mapp; 2019 May; 40(7):2089-2103. PubMed ID: 30659699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.