BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 35445297)

  • 1. Machine Learning for Cardiovascular Biomechanics Modeling: Challenges and Beyond.
    Arzani A; Wang JX; Sacks MS; Shadden SC
    Ann Biomed Eng; 2022 Jun; 50(6):615-627. PubMed ID: 35445297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An adversarial machine learning framework and biomechanical model-guided approach for computing 3D lung tissue elasticity from end-expiration 3DCT.
    Santhanam AP; Stiehl B; Lauria M; Hasse K; Barjaktarevic I; Goldin J; Low DA
    Med Phys; 2021 Feb; 48(2):667-675. PubMed ID: 32449519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning dynamical systems from data: An introduction to physics-guided deep learning.
    Yu R; Wang R
    Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2311808121. PubMed ID: 38913886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physics-constrained deep active learning for spatiotemporal modeling of cardiac electrodynamics.
    Xie J; Yao B
    Comput Biol Med; 2022 Jul; 146():105586. PubMed ID: 35751197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities.
    Halilaj E; Rajagopal A; Fiterau M; Hicks JL; Hastie TJ; Delp SL
    J Biomech; 2018 Nov; 81():1-11. PubMed ID: 30279002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-fidelity information fusion with concatenated neural networks.
    Pawar S; San O; Vedula P; Rasheed A; Kvamsdal T
    Sci Rep; 2022 Apr; 12(1):5900. PubMed ID: 35393511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interplay between Artificial Intelligence and Biomechanics Modeling in the Cardiovascular Disease Prediction.
    Li X; Liu X; Deng X; Fan Y
    Biomedicines; 2022 Sep; 10(9):. PubMed ID: 36140258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating machine learning and multiscale modeling-perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences.
    Alber M; Buganza Tepole A; Cannon WR; De S; Dura-Bernal S; Garikipati K; Karniadakis G; Lytton WW; Perdikaris P; Petzold L; Kuhl E
    NPJ Digit Med; 2019; 2():115. PubMed ID: 31799423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physics-driven CFD modeling of complex anatomical cardiovascular flows-a TCPC case study.
    Pekkan K; de Zélicourt D; Ge L; Sotiropoulos F; Frakes D; Fogel MA; Yoganathan AP
    Ann Biomed Eng; 2005 Mar; 33(3):284-300. PubMed ID: 15868719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The potential for machine learning algorithms to improve and reduce the cost of 3-dimensional printing for surgical planning.
    Huff TJ; Ludwig PE; Zuniga JM
    Expert Rev Med Devices; 2018 May; 15(5):349-356. PubMed ID: 29723481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An extensible software platform for interdisciplinary cardiovascular imaging research.
    Huellebrand M; Messroghli D; Tautz L; Kuehne T; Hennemuth A
    Comput Methods Programs Biomed; 2020 Feb; 184():105277. PubMed ID: 31891904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale modeling methods in biomechanics.
    Bhattacharya P; Viceconti M
    Wiley Interdiscip Rev Syst Biol Med; 2017 May; 9(3):. PubMed ID: 28102563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Potential of Deep Learning to Advance Clinical Applications of Computational Biomechanics.
    Truskey GA
    Bioengineering (Basel); 2023 Sep; 10(9):. PubMed ID: 37760168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physics-Driven Deep Learning for Computational Magnetic Resonance Imaging: Combining physics and machine learning for improved medical imaging.
    Hammernik K; Küstner T; Yaman B; Huang Z; Rueckert D; Knoll F; Akçakaya M
    IEEE Signal Process Mag; 2023 Jan; 40(1):98-114. PubMed ID: 37304755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning in biological physics: From biomolecular prediction to design.
    Martin J; Lequerica Mateos M; Onuchic JN; Coluzza I; Morcos F
    Proc Natl Acad Sci U S A; 2024 Jul; 121(27):e2311807121. PubMed ID: 38913893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiscale modeling meets machine learning: What can we learn?
    Peng GCY; Alber M; Tepole AB; Cannon WR; De S; Dura-Bernal S; Garikipati K; Karniadakis G; Lytton WW; Perdikaris P; Petzold L; Kuhl E
    Arch Comput Methods Eng; 2021 May; 28(3):1017-1037. PubMed ID: 34093005
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining Inertial Sensors and Machine Learning to Predict vGRF and Knee Biomechanics during a Double Limb Jump Landing Task.
    Chaaban CR; Berry NT; Armitano-Lago C; Kiefer AW; Mazzoleni MJ; Padua DA
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34206782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.