BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 35445592)

  • 1. Two-step verification method for Monte Carlo codes in biomedical optics applications.
    Sassaroli A; Tommasi F; Cavalieri S; Fini L; Liemert A; Kienle A; Binzoni T; Martelli F
    J Biomed Opt; 2022 Apr; 27(8):. PubMed ID: 35445592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Verification method of Monte Carlo codes for transport processes with arbitrary accuracy.
    Martelli F; Tommasi F; Sassaroli A; Fini L; Cavalieri S
    Sci Rep; 2021 Sep; 11(1):19486. PubMed ID: 34593837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monte Carlo simulations in anomalous radiative transfer: tutorial.
    Binzoni T; Martelli F
    J Opt Soc Am A Opt Image Sci Vis; 2022 Jun; 39(6):1053-1060. PubMed ID: 36215535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accuracy of the diffusion equation to describe photon migration through an infinite medium: numerical and experimental investigation.
    Martelli F; Bassani M; Alianelli L; Zangheri L; Zaccanti G
    Phys Med Biol; 2000 May; 45(5):1359-73. PubMed ID: 10843109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equivalence of four Monte Carlo methods for photon migration in turbid media.
    Sassaroli A; Martelli F
    J Opt Soc Am A Opt Image Sci Vis; 2012 Oct; 29(10):2110-7. PubMed ID: 23201658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peer-to-peer Monte Carlo simulation of photon migration in topical applications of biomedical optics.
    Doronin A; Meglinski I
    J Biomed Opt; 2012 Sep; 17(9):90504-1. PubMed ID: 23085901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of relative error in perturbation Monte Carlo simulations of radiative transport.
    Parsanasab M; Hayakawa C; Spanier J; Shen Y; Venugopalan V
    J Biomed Opt; 2023 Jun; 28(6):065001. PubMed ID: 37293394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics.
    Binzoni T; Leung TS; Gandjbakhche AH; Rüfenacht D; Delpy DT
    Phys Med Biol; 2006 Sep; 51(17):N313-22. PubMed ID: 16912370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Topological complexity of photons' paths in biological tissues.
    Binzoni T; Martelli F; Cimasoni D
    J Opt Soc Am A Opt Image Sci Vis; 2019 Nov; 36(11):1883-1891. PubMed ID: 31873704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Properties of the light emerging from a diffusive medium: angular dependence and flux at the external boundary.
    Martelli F; Sassaroli A; Zaccanti G; Yamada Y
    Phys Med Biol; 1999 May; 44(5):1257-75. PubMed ID: 10368017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of polarization-sensitive optical coherence tomography images by a Monte Carlo method.
    Meglinski I; Kirillin M; Kuzmin V; Myllylä R
    Opt Lett; 2008 Jul; 33(14):1581-3. PubMed ID: 18628804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Light transport in tissue by 3D Monte Carlo: influence of boundary voxelization.
    Binzoni T; Leung TS; Giust R; Rüfenacht D; Gandjbakhche AH
    Comput Methods Programs Biomed; 2008 Jan; 89(1):14-23. PubMed ID: 18045725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comment on 'the use of the Henyey-Greenstein phase function in Monte Carlo simulations in biomedical optics'.
    Binzoni T; Leung TS; Gandjbakhche AH; Rüfenacht D; Delpy DT
    Phys Med Biol; 2006 Nov; 51(22):L39-41. PubMed ID: 17068360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient computation of the steady-state and time-domain solutions of the photon diffusion equation in layered turbid media.
    Helton M; Zerafa S; Vishwanath K; Mycek MA
    Sci Rep; 2022 Nov; 12(1):18979. PubMed ID: 36347893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of lateral boundaries on contrast functions in time-resolved transillumination measurements.
    Chernomordik V; Gandjbakhche AH; Hebden JC; Zaccanti G
    Med Phys; 1999 Sep; 26(9):1822-31. PubMed ID: 10505870
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Explicit solutions of the radiative transport equation in the P3 approximation.
    Liemert A; Kienle A
    Med Phys; 2014 Nov; 41(11):111916. PubMed ID: 25370649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MCDataset: a public reference dataset of Monte Carlo simulated quantities for multilayered and voxelated tissues computed by massively parallel PyXOpto Python package.
    Bürmen M; Pernuš F; Naglič P
    J Biomed Opt; 2022 Apr; 27(8):. PubMed ID: 35437973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast perturbation Monte Carlo method for photon migration in heterogeneous turbid media.
    Sassaroli A
    Opt Lett; 2011 Jun; 36(11):2095-7. PubMed ID: 21633460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of the Monte Carlo code for modeling of photon migration in tissue.
    Zołek NS; Liebert A; Maniewski R
    Comput Methods Programs Biomed; 2006 Oct; 84(1):50-7. PubMed ID: 16962201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance optimization of a tri-hybrid method for estimation of patient scatter into the EPID.
    Guo K; Ingleby H; Van Uytven E; Elbakri I; Van Beek T; McCurdy B
    J Appl Clin Med Phys; 2021 Nov; 22(11):99-114. PubMed ID: 34697889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.