These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 35445592)

  • 21. Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems.
    Tycho A; Jørgensen TM; Yura HT; Andersen PE
    Appl Opt; 2002 Nov; 41(31):6676-91. PubMed ID: 12412659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signal degradation by multiple scattering in optical coherence tomography of dense tissue: a Monte Carlo study towards optical clearing of biotissues.
    Wang RK
    Phys Med Biol; 2002 Jul; 47(13):2281-99. PubMed ID: 12164587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Macro-Monte Carlo method for the simulation of diffuse light transport in tissue.
    Finlay JC; Zhu TC
    Proc SPIE Int Soc Opt Eng; 2006 Jan; 6139():. PubMed ID: 26113756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optical sampling depth in the spatial frequency domain.
    Hayakawa CK; Karrobi K; Pera V; Roblyer D; Venugopalan V
    J Biomed Opt; 2019 Jul; 24(7):. PubMed ID: 30218504
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Uncertainties in Monte Carlo-based absorbed dose calculations for an experimental benchmark.
    Renner F; Wulff J; Kapsch RP; Zink K
    Phys Med Biol; 2015 Oct; 60(19):7637-53. PubMed ID: 26389610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monte Carlo method for photon heating using temperature-dependent optical properties.
    Slade AB; Aguilar G
    Comput Methods Programs Biomed; 2015 Feb; 118(2):234-41. PubMed ID: 25488656
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analytical solution of the vector radiative transfer equation for single scattered radiance.
    Hank P; Liemert A; Kienle A
    J Opt Soc Am A Opt Image Sci Vis; 2022 Nov; 39(11):2045-2053. PubMed ID: 36520701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Simple and accurate expressions for diffuse reflectance of semi-infinite and two-layer absorbing and scattering media.
    Yudovsky D; Pilon L
    Appl Opt; 2009 Dec; 48(35):6670-83. PubMed ID: 20011007
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epifluorescence collection in two-photon microscopy.
    Beaurepaire E; Mertz J
    Appl Opt; 2002 Sep; 41(25):5376-82. PubMed ID: 12211567
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of optical properties of highly scattering media by moments of distributions of times of flight of photons.
    Liebert A; Wabnitz H; Grosenick D; Möller M; Macdonald R; Rinneberg H
    Appl Opt; 2003 Oct; 42(28):5785-92. PubMed ID: 14528944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Technical note: development and validation of a Monte Carlo tool for analysis of patient-generated photon scatter.
    Guo K; Ingleby H; Elbakri I; Van Beek T; McCurdy B
    Phys Med Biol; 2020 May; 65(9):09NT02. PubMed ID: 32160599
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Validation of a Monte Carlo code system for grid evaluation with interference effect on Rayleigh scattering.
    Zhou A; White GL; Davidson R
    Phys Med Biol; 2018 Feb; 63(3):03NT02. PubMed ID: 29283359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using graphics processing units to accelerate perturbation Monte Carlo simulation in a turbid medium.
    Cai F; He S
    J Biomed Opt; 2012 Apr; 17(4):040502. PubMed ID: 22559668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved accuracy in time-resolved diffuse reflectance spectroscopy.
    Alerstam E; Andersson-Engels S; Svensson T
    Opt Express; 2008 Jul; 16(14):10440-54. PubMed ID: 18607457
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient inversion strategies for estimating optical properties with Monte Carlo radiative transport models.
    Macdonald C; Arridge S; Powell S
    J Biomed Opt; 2020 Aug; 25(8):. PubMed ID: 32798354
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Numerical study on the validity of the diffusion approximation for computational optical biopsy.
    Shen H; Cong W; Qian X; Durairaj K; Wang G
    J Opt Soc Am A Opt Image Sci Vis; 2007 Feb; 24(2):423-9. PubMed ID: 17206257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluence rate directly derived from photon pathlengths: a tool for Monte Carlo simulations in biomedical optics.
    Sassaroli A; Tommasi F; Cavalieri S; Martelli F
    Biomed Opt Express; 2023 Jan; 14(1):148-162. PubMed ID: 36698672
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diffuse photon density wave measurements and Monte Carlo simulations.
    Kuzmin VL; Neidrauer MT; Diaz D; Zubkov LA
    J Biomed Opt; 2015 Oct; 20(10):105006. PubMed ID: 26465614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on the propagation of ultra-short pulse light in cylindrical optical phantoms.
    Sassaroli A; Martelli F; Imai D; Yamada Y
    Phys Med Biol; 1999 Nov; 44(11):2747-63. PubMed ID: 10588282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application limits of the scaling relations for Monte Carlo simulations in diffuse optics. Part 1: theory.
    Amendola C; Maffeis G; Farina A; Spinelli L; Torricelli A; Pifferi A; Sassaroli A; Fanelli D; Tommasi F; Martelli F
    Opt Express; 2024 Jan; 32(1):125-150. PubMed ID: 38175044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.