These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35445862)

  • 21. Effect of Climate Change on Introduced and Native Agricultural Invasive Insect Pests in Europe.
    Skendžić S; Zovko M; Pajač Živković I; Lešić V; Lemić D
    Insects; 2021 Oct; 12(11):. PubMed ID: 34821786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions.
    Chidawanyika F; Mudavanhu P; Nyamukondiwa C
    Insects; 2012 Nov; 3(4):1171-89. PubMed ID: 26466733
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Agricultural insect hybridization and implications for pest management.
    Corrêa AS; Cordeiro EM; Omoto C
    Pest Manag Sci; 2019 Nov; 75(11):2857-2864. PubMed ID: 31124266
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crop and forest pest metawebs shift towards increased linkage and suitability overlap under climate change.
    Grünig M; Mazzi D; Calanca P; Karger DN; Pellissier L
    Commun Biol; 2020 May; 3(1):233. PubMed ID: 32393851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Agricultural intensification and climate change are rapidly decreasing insect biodiversity.
    Raven PH; Wagner DL
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33431564
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increase in crop losses to insect pests in a warming climate.
    Deutsch CA; Tewksbury JJ; Tigchelaar M; Battisti DS; Merrill SC; Huey RB; Naylor RL
    Science; 2018 Aug; 361(6405):916-919. PubMed ID: 30166490
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross-protection interactions in insect pests: Implications for pest management in a changing climate.
    Bueno EM; McIlhenny CL; Chen YH
    Pest Manag Sci; 2023 Jan; 79(1):9-20. PubMed ID: 36127854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Higher bee abundance, but not pest abundance, in landscapes with more agriculture on a late-flowering legume crop in tropical smallholder farms.
    Vogel C; Chunga TL; Sun X; Poveda K; Steffan-Dewenter I
    PeerJ; 2021; 9():e10732. PubMed ID: 33643704
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Changes in the distribution of multispecies pest assemblages affect levels of crop damage in warming tropical Andes.
    Crespo-Pérez V; Régnière J; Chuine I; Rebaudo F; Dangles O
    Glob Chang Biol; 2015 Jan; 21(1):82-96. PubMed ID: 24920187
    [TBL] [Abstract][Full Text] [Related]  

  • 30. United States Department of Agriculture-Agricultural Research Service research on managing insect resistance to insecticides.
    Elzen GW; Hardee DD
    Pest Manag Sci; 2003; 59(6-7):770-6. PubMed ID: 12846328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pest management strategies in traditional agriculture: an African perspective.
    Abate T; van Huis A; Ampofo JK
    Annu Rev Entomol; 2000; 45():631-59. PubMed ID: 10761592
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High tunnels: protection for rather than from insect pests?
    Ingwell LL; Thompson SL; Kaplan I; Foster RE
    Pest Manag Sci; 2017 Dec; 73(12):2439-2446. PubMed ID: 28580756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. United States Department of Agriculture-Agricultural Research Service stored-grain areawide integrated pest management program.
    Flinn PW; Hagstrum DW; Reed C; Phillips TW
    Pest Manag Sci; 2003; 59(6-7):614-8. PubMed ID: 12846311
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of the effects of climate change on the occurrence of tomato invasive insect pests in Uganda.
    Gno-Solim Ela N; Olago D; Akinyi AD; Tonnang HEZ
    Heliyon; 2023 Feb; 9(2):e13702. PubMed ID: 36865473
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intercropping for management of insect pests of castor, Ricinus communis, in the semi-arid tropics of India.
    Rao MS; Rama Rao CA; Srinivas K; Pratibha G; Vidya Sekhar SM; Sree Vani G; Venkateswarlu B
    J Insect Sci; 2012; 12():14. PubMed ID: 22934569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature Impacts the Development and Survival of Common Cutworm (Spodoptera litura): Simulation and Visualization of Potential Population Growth in India under Warmer Temperatures through Life Cycle Modelling and Spatial Mapping.
    Fand BB; Sul NT; Bal SK; Minhas PS
    PLoS One; 2015; 10(4):e0124682. PubMed ID: 25927609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. UV radiation effects on pathogens and insect pests of greenhouse-grown crops.
    Raviv M; Antignus Y
    Photochem Photobiol; 2004 Mar; 79(3):219-26. PubMed ID: 15115293
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The risk of exotic and native plants as hosts for four pest thrips (Thysanoptera: Thripinae).
    Schellhorn NA; Glatz RV; Wood GM
    Bull Entomol Res; 2010 Oct; 100(5):501-10. PubMed ID: 20569517
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Temperature- and CO2-dependent life table parameters of Spodoptera litura (Noctuidae: Lepidoptera) on sunflower and prediction of pest scenarios.
    Manimanjari D; Srinivasa Rao M; Swathi P; Rama Rao CA; Vanaja M; Maheswari M
    J Insect Sci; 2014; 14():. PubMed ID: 25528748
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Why apple orchards are shifting to the higher altitudes of the Himalayas?
    Sahu N; Saini A; Behera SK; Sayama T; Sahu L; Nguyen VT; Takara K
    PLoS One; 2020; 15(7):e0235041. PubMed ID: 32649669
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.