These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 35446218)

  • 1. Computational Fontan Analysis: Preserving Accuracy While Expediting Workflow.
    Liu X; Aslan S; Kim B; Warburton L; Jackson D; Muhuri A; Subramanian A; Mass P; Cleveland V; Loke YH; Hibino N; Olivieri L; Krieger A
    World J Pediatr Congenit Heart Surg; 2022 May; 13(3):293-301. PubMed ID: 35446218
    [No Abstract]   [Full Text] [Related]  

  • 2. Virtual surgical planning, flow simulation, and 3-dimensional electrospinning of patient-specific grafts to optimize Fontan hemodynamics.
    Siallagan D; Loke YH; Olivieri L; Opfermann J; Ong CS; de Zélicourt D; Petrou A; Daners MS; Kurtcuoglu V; Meboldt M; Nelson K; Vricella L; Johnson J; Hibino N; Krieger A
    J Thorac Cardiovasc Surg; 2018 Apr; 155(4):1734-1742. PubMed ID: 29361303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can time-averaged flow boundary conditions be used to meet the clinical timeline for Fontan surgical planning?
    Wei ZA; Trusty PM; Tree M; Haggerty CM; Tang E; Fogel M; Yoganathan AP
    J Biomech; 2017 Jan; 50():172-179. PubMed ID: 27855985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of respiration-driven flow waveforms on hemodynamic metrics used in Fontan surgical planning.
    Tang E; Wei ZA; Trusty PM; Whitehead KK; Mirabella L; Veneziani A; Fogel MA; Yoganathan AP
    J Biomech; 2019 Jan; 82():87-95. PubMed ID: 30414631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of surgeon intuition and computer-aided design in Fontan optimization: A computational fluid dynamics simulation study.
    Loke YH; Kim B; Mass P; Opfermann JD; Hibino N; Krieger A; Olivieri L
    J Thorac Cardiovasc Surg; 2020 Jul; 160(1):203-212.e2. PubMed ID: 32057454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro measurement of hepatic flow distribution in Fontan vascular conduits: Towards rapid validation techniques.
    Rasooli R; Kose B; Samaneh Lashkarinia S; Sasmazel A; Pekkan K
    J Biomech; 2022 May; 137():111092. PubMed ID: 35460935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Hemodynamic Performance of Fontan Operation for Glenn Physiology using Computational Fluid Dynamics: Ten Patient-specific Cases.
    Javadi E; Laudenschlager S; Kheyfets V; Di Maria M; Stone M; Jamali S; Powell AJ; Moghari MH
    J Clin Images Med Case Rep; 2022 Jun; 3(6):. PubMed ID: 36339935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surgical planning of the total cavopulmonary connection: robustness analysis.
    Restrepo M; Luffel M; Sebring J; Kanter K; Del Nido P; Veneziani A; Rossignac J; Yoganathan A
    Ann Biomed Eng; 2015 Jun; 43(6):1321-34. PubMed ID: 25316591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Age-related change in Caval Flow Ratio on Hepatic Flow Distribution in Fontan.
    Govindarajan V; Marshall L; Sahni A; Cetatoiu M; Eickhoff E; Davee J; St Clair N; Schulz N; Hoganson DM; Hammer PE; Ghelani S; Prakash A; Del Nido PJ; Rathod RH
    medRxiv; 2023 Sep; ():. PubMed ID: 37732201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress in the CFD modeling of flow instabilities in anatomical total cavopulmonary connections.
    Wang C; Pekkan K; de Zélicourt D; Horner M; Parihar A; Kulkarni A; Yoganathan AP
    Ann Biomed Eng; 2007 Nov; 35(11):1840-56. PubMed ID: 17641974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Postsurgical comparison of pulsatile hemodynamics in five unique total cavopulmonary connections: identifying ideal connection strategies.
    Hong H; Menon PG; Zhang H; Ye L; Zhu Z; Chen H; Liu J
    Ann Thorac Surg; 2013 Oct; 96(4):1398-1404. PubMed ID: 23910632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Fluid Dynamics Support for Fontan Planning in Minutes, Not Hours: The Next Step in Clinical Pre-Interventional Simulations.
    Frieberg P; Aristokleous N; Sjöberg P; Töger J; Liuba P; Carlsson M
    J Cardiovasc Transl Res; 2022 Aug; 15(4):708-720. PubMed ID: 34961904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Computational Fluid Dynamics Rupture Challenge 2013--Phase II: Variability of Hemodynamic Simulations in Two Intracranial Aneurysms.
    Berg P; Roloff C; Beuing O; Voss S; Sugiyama S; Aristokleous N; Anayiotos AS; Ashton N; Revell A; Bressloff NW; Brown AG; Chung BJ; Cebral JR; Copelli G; Fu W; Qiao A; Geers AJ; Hodis S; Dragomir-Daescu D; Nordahl E; Bora Suzen Y; Owais Khan M; Valen-Sendstad K; Kono K; Menon PG; Albal PG; Mierka O; Münster R; Morales HG; Bonnefous O; Osman J; Goubergrits L; Pallares J; Cito S; Passalacqua A; Piskin S; Pekkan K; Ramalho S; Marques N; Sanchi S; Schumacher KR; Sturgeon J; Švihlová H; Hron J; Usera G; Mendina M; Xiang J; Meng H; Steinman DA; Janiga G
    J Biomech Eng; 2015 Dec; 137(12):121008. PubMed ID: 26473395
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Inlet Velocity Profiles in Numerical Assessment of Fontan Hemodynamics.
    Wei ZA; Huddleston C; Trusty PM; Singh-Gryzbon S; Fogel MA; Veneziani A; Yoganathan AP
    Ann Biomed Eng; 2019 Nov; 47(11):2258-2270. PubMed ID: 31236791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steady Flow in a Patient-Averaged Inferior Vena Cava-Part II: Computational Fluid Dynamics Verification and Validation.
    Craven BA; Aycock KI; Manning KB
    Cardiovasc Eng Technol; 2018 Dec; 9(4):654-673. PubMed ID: 30446978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fontan hemodynamics from 100 patient-specific cardiac magnetic resonance studies: a computational fluid dynamics analysis.
    Haggerty CM; Restrepo M; Tang E; de Zélicourt DA; Sundareswaran KS; Mirabella L; Bethel J; Whitehead KK; Fogel MA; Yoganathan AP
    J Thorac Cardiovasc Surg; 2014 Oct; 148(4):1481-9. PubMed ID: 24507891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of hemodynamics and fluid energetics on liver fibrosis after Fontan operation.
    Trusty PM; Wei Z; Rychik J; Russo PA; Surrey LF; Goldberg DJ; Fogel MA; Yoganathan AP
    J Thorac Cardiovasc Surg; 2018 Jul; 156(1):267-275. PubMed ID: 29609888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hepatic blood flow distribution and performance in conventional and novel Y-graft Fontan geometries: a case series computational fluid dynamics study.
    Yang W; Vignon-Clementel IE; Troianowski G; Reddy VM; Feinstein JA; Marsden AL
    J Thorac Cardiovasc Surg; 2012 May; 143(5):1086-97. PubMed ID: 21962841
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemodynamic Effects of Additional Pulmonary Blood Flow on Glenn and Fontan Circulation.
    Chen X; Yuan H; Liu J; Zhang N; Zhou C; Huang M; Jian Q; Zhuang J
    Cardiovasc Eng Technol; 2020 Jun; 11(3):268-282. PubMed ID: 32072439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational fluid dynamic simulations of a cavopulmonary assist device for failing Fontan circulation.
    Lin WCP; Doyle MG; Roche SL; Honjo O; Forbes TL; Amon CH
    J Thorac Cardiovasc Surg; 2019 Nov; 158(5):1424-1433.e5. PubMed ID: 31005303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.