These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 35446427)

  • 1. Riboswitch-inspired toehold riboregulators for gene regulation in Escherichia coli.
    Wang T; Simmel FC
    Nucleic Acids Res; 2022 May; 50(8):4784-4798. PubMed ID: 35446427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toehold switches: de-novo-designed regulators of gene expression.
    Green AA; Silver PA; Collins JJ; Yin P
    Cell; 2014 Nov; 159(4):925-39. PubMed ID: 25417166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic Comparison and Rational Design of Theophylline Riboswitches for Effective Gene Repression.
    Wang X; Fang C; Wang Y; Shi X; Yu F; Xiong J; Chou SH; He J
    Microbiol Spectr; 2023 Feb; 11(1):e0275222. PubMed ID: 36688639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleic acid strand displacement - from DNA nanotechnology to translational regulation.
    Simmel FC
    RNA Biol; 2023 Jan; 20(1):154-163. PubMed ID: 37095744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Riboregulated toehold-gated gRNA for programmable CRISPR-Cas9 function.
    Siu KH; Chen W
    Nat Chem Biol; 2019 Mar; 15(3):217-220. PubMed ID: 30531984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal amplification and optimization of riboswitch-based hybrid inputs by modular and titratable toehold switches.
    Hwang Y; Kim SG; Jang S; Kim J; Jung GY
    J Biol Eng; 2021 Mar; 15(1):11. PubMed ID: 33741029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirements for efficient ligand-gated co-transcriptional switching in designed variants of the B. subtilis pbuE adenine-responsive riboswitch in E. coli.
    Drogalis LK; Batey RT
    PLoS One; 2020; 15(12):e0243155. PubMed ID: 33259551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of RNA-Based Translational Repressors.
    Hong S; Park D; Chaudhary S; McCutcheon G; Green AA; Kim J
    Methods Mol Biol; 2022; 2518():49-64. PubMed ID: 35666438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developments of Riboswitches and Toehold Switches for Molecular Detection-Biosensing and Molecular Diagnostics.
    Chau THT; Mai DHA; Pham DN; Le HTQ; Lee EY
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32366036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Toehold-Mediated Switches for Native RNA Detection and Regulation in Bacteria.
    Ekdahl AM; Rojano-Nisimura AM; Contreras LM
    J Mol Biol; 2022 Sep; 434(18):167689. PubMed ID: 35717997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Riboswitch regulation mechanisms: RNA, metabolites and regulatory proteins.
    Bédard AV; Hien EDM; Lafontaine DA
    Biochim Biophys Acta Gene Regul Mech; 2020 Mar; 1863(3):194501. PubMed ID: 32036061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional Interference in Toehold Switch-Based RNA Circuits.
    Falgenhauer E; Mückl A; Schwarz-Schilling M; Simmel FC
    ACS Synth Biol; 2022 May; 11(5):1735-1745. PubMed ID: 35412304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional pausing coordinates folding of the aptamer domain and the expression platform of a riboswitch.
    Perdrizet GA; Artsimovitch I; Furman R; Sosnick TR; Pan T
    Proc Natl Acad Sci U S A; 2012 Feb; 109(9):3323-8. PubMed ID: 22331895
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Translational control and Rho-dependent transcription termination are intimately linked in riboswitch regulation.
    Bastet L; Chauvier A; Singh N; Lussier A; Lamontagne AM; Prévost K; Massé E; Wade JT; Lafontaine DA
    Nucleic Acids Res; 2017 Jul; 45(12):7474-7486. PubMed ID: 28520932
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction and In Vivo Testing of Prokaryotic Riboregulators.
    Green AA
    Methods Mol Biol; 2017; 1632():285-302. PubMed ID: 28730447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond Plug and Pray: Context Sensitivity and
    Günzel C; Kühnl F; Arnold K; Findeiß S; Weinberg CE; Stadler PF; Mörl M
    RNA Biol; 2021 Apr; 18(4):457-467. PubMed ID: 32882151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulating Responses of Toehold Switches by an Inhibitory Hairpin.
    Kim SJ; Leong M; Amrofell MB; Lee YJ; Moon TS
    ACS Synth Biol; 2019 Mar; 8(3):601-605. PubMed ID: 30721039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic switches based on nucleic acid strand displacement.
    Wang T; Hellmer H; Simmel FC
    Curr Opin Biotechnol; 2023 Feb; 79():102867. PubMed ID: 36535150
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable Riboregulator Switches for Post-transcriptional Control of Gene Expression.
    Krishnamurthy M; Hennelly SP; Dale T; Starkenburg SR; Martí-Arbona R; Fox DT; Twary SN; Sanbonmatsu KY; Unkefer CJ
    ACS Synth Biol; 2015 Dec; 4(12):1326-34. PubMed ID: 26165796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. "Toehold Switches; a foothold for Synthetic Biology".
    Yarra SS; Ashok G; Mohan U
    Biotechnol Bioeng; 2023 Apr; 120(4):932-952. PubMed ID: 36527224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.