BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 35446558)

  • 1. Tetrazine-Ligated CRISPR sgRNAs for Efficient Genome Editing.
    Chen Z; Devi G; Arif A; Zamore PD; Sontheimer EJ; Watts JK
    ACS Chem Biol; 2022 May; 17(5):1045-1050. PubMed ID: 35446558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Versatility of chemically synthesized guide RNAs for CRISPR-Cas9 genome editing.
    Kelley ML; Strezoska Ž; He K; Vermeulen A; Smith Av
    J Biotechnol; 2016 Sep; 233():74-83. PubMed ID: 27374403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells.
    Hendel A; Bak RO; Clark JT; Kennedy AB; Ryan DE; Roy S; Steinfeld I; Lunstad BD; Kaiser RJ; Wilkens AB; Bacchetta R; Tsalenko A; Dellinger D; Bruhn L; Porteus MH
    Nat Biotechnol; 2015 Sep; 33(9):985-989. PubMed ID: 26121415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conjugation and Evaluation of Triazole-Linked Single Guide RNA for CRISPR-Cas9 Gene Editing.
    He K; Chou ET; Begay S; Anderson EM; van Brabant Smith A
    Chembiochem; 2016 Oct; 17(19):1809-1812. PubMed ID: 27441384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing.
    Liang G; Zhang H; Lou D; Yu D
    Sci Rep; 2016 Feb; 6():21451. PubMed ID: 26891616
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimal 2'-O-methyl phosphorothioate linkage modification pattern of synthetic guide RNAs for increased stability and efficient CRISPR-Cas9 gene editing avoiding cellular toxicity.
    Basila M; Kelley ML; Smith AVB
    PLoS One; 2017; 12(11):e0188593. PubMed ID: 29176845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Cas9 multiplex editing using unspaced sgRNA arrays engineering in a Potato virus X vector.
    Uranga M; Aragonés V; Selma S; Vázquez-Vilar M; Orzáez D; Daròs JA
    Plant J; 2021 Apr; 106(2):555-565. PubMed ID: 33484202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Guide RNA modification as a way to improve CRISPR/Cas9-based genome-editing systems.
    Filippova J; Matveeva A; Zhuravlev E; Stepanov G
    Biochimie; 2019 Dec; 167():49-60. PubMed ID: 31493470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cloud-Based Design of Short Guide RNA (sgRNA) Libraries for CRISPR Experiments.
    Heigwer F; Boutros M
    Methods Mol Biol; 2021; 2162():3-22. PubMed ID: 32926374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex Single-Nucleotide Microbial Genome Editing Achieved by CRISPR-Cas9 Using 5'-End-Truncated sgRNAs.
    Lim SR; Lee HJ; Kim HJ; Lee SJ
    ACS Synth Biol; 2023 Jul; 12(7):2203-2207. PubMed ID: 37368988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Stability and Specificity of CRISPR/Cas9 System by Selective Modification of Guide RNAs with 2'-fluoro and Locked Nucleic Acid Nucleotides.
    Sakovina L; Vokhtantsev I; Vorobyeva M; Vorobyev P; Novopashina D
    Int J Mol Sci; 2022 Nov; 23(21):. PubMed ID: 36362256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mismatch Intolerance of 5'-Truncated sgRNAs in CRISPR/Cas9 Enables Efficient Microbial Single-Base Genome Editing.
    Lee HJ; Kim HJ; Lee SJ
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34208669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized Cas9:sgRNA delivery efficiently generates biallelic MSTN knockout sheep without affecting meat quality.
    Zhou S; Kalds P; Luo Q; Sun K; Zhao X; Gao Y; Cai B; Huang S; Kou Q; Petersen B; Chen Y; Ma B; Wang X
    BMC Genomics; 2022 May; 23(1):348. PubMed ID: 35524183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. sgRNA Sequence Motifs Blocking Efficient CRISPR/Cas9-Mediated Gene Editing.
    Graf R; Li X; Chu VT; Rajewsky K
    Cell Rep; 2019 Jan; 26(5):1098-1103.e3. PubMed ID: 30699341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Multi-Allelic Genome Editing of Primary Cell Cultures via CRISPR-Cas9 Ribonucleoprotein Nucleofection.
    Hoellerbauer P; Kufeld M; Paddison PJ
    Curr Protoc Stem Cell Biol; 2020 Sep; 54(1):e126. PubMed ID: 32833346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Single Transcript CRISPR-Cas9 System for Multiplex Genome Editing in Plants.
    Tang X; Zhong Z; Ren Q; Liu B; Zhang Y
    Methods Mol Biol; 2019; 1917():75-82. PubMed ID: 30610629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of CRISPR sgRNA Activity Using a Deep Convolutional Neural Network.
    Xue L; Tang B; Chen W; Luo J
    J Chem Inf Model; 2019 Jan; 59(1):615-624. PubMed ID: 30485088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimized protocol for gene editing in adipocytes using CRISPR-Cas9 technology.
    Qiu Y; Ding Q
    STAR Protoc; 2021 Mar; 2(1):100307. PubMed ID: 33554142
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-ERA: A Webserver for Guide RNA Design of Gene Editing and Regulation.
    Liu H; Wang X
    Methods Mol Biol; 2021; 2189():65-69. PubMed ID: 33180293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling the Activity of CRISPR Transcriptional Regulators with Inducible sgRNAs.
    Ferry QRV; Fulga TA
    Methods Mol Biol; 2021; 2162():153-184. PubMed ID: 32926382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.