These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1319 related articles for article (PubMed ID: 35446781)

  • 1. Monitoring User Opinions and Side Effects on COVID-19 Vaccines in the Twittersphere: Infodemiology Study of Tweets.
    Portelli B; Scaboro S; Tonino R; Chersoni E; Santus E; Serra G
    J Med Internet Res; 2022 May; 24(5):e35115. PubMed ID: 35446781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial Intelligence-Enabled Social Media Analysis for Pharmacovigilance of COVID-19 Vaccinations in the United Kingdom: Observational Study.
    Hussain Z; Sheikh Z; Tahir A; Dashtipour K; Gogate M; Sheikh A; Hussain A
    JMIR Public Health Surveill; 2022 May; 8(5):e32543. PubMed ID: 35144240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. COVID-19 Vaccine-Related Discussion on Twitter: Topic Modeling and Sentiment Analysis.
    Lyu JC; Han EL; Luli GK
    J Med Internet Res; 2021 Jun; 23(6):e24435. PubMed ID: 34115608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tracking Public Attitudes Toward COVID-19 Vaccination on Tweets in Canada: Using Aspect-Based Sentiment Analysis.
    Jang H; Rempel E; Roe I; Adu P; Carenini G; Janjua NZ
    J Med Internet Res; 2022 Mar; 24(3):e35016. PubMed ID: 35275835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. COVID-19 Vaccine Tweets After Vaccine Rollout: Sentiment-Based Topic Modeling.
    Huangfu L; Mo Y; Zhang P; Zeng DD; He S
    J Med Internet Res; 2022 Feb; 24(2):e31726. PubMed ID: 34783665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of Public Attitudes and Opinions Regarding COVID-19 Vaccination During the Vaccine Campaign in China: Year-Long Infodemiology Study of Weibo Posts.
    Hong Y; Xie F; An X; Lan X; Liu C; Yan L; Zhang H
    J Med Internet Res; 2023 Feb; 25():e42671. PubMed ID: 36795467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tweet Topics and Sentiments Relating to COVID-19 Vaccination Among Australian Twitter Users: Machine Learning Analysis.
    Kwok SWH; Vadde SK; Wang G
    J Med Internet Res; 2021 May; 23(5):e26953. PubMed ID: 33886492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comprehensive Analysis of COVID-19 Vaccine Discourse by Vaccine Brand on Twitter in Korea: Topic and Sentiment Analysis.
    Park S; Suh YK
    J Med Internet Res; 2023 Jan; 25():e42623. PubMed ID: 36603153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of the Negative Discourse Toward COVID-19 Vaccines: Topic Modeling Study and an Annotated Data Set of Twitter Posts.
    Lindelöf G; Aledavood T; Keller B
    J Med Internet Res; 2023 Apr; 25():e41319. PubMed ID: 36877804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topics and Sentiments of Public Concerns Regarding COVID-19 Vaccines: Social Media Trend Analysis.
    Monselise M; Chang CH; Ferreira G; Yang R; Yang CC
    J Med Internet Res; 2021 Oct; 23(10):e30765. PubMed ID: 34581682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Social Media Insights Into US Mental Health During the COVID-19 Pandemic: Longitudinal Analysis of Twitter Data.
    Valdez D; Ten Thij M; Bathina K; Rutter LA; Bollen J
    J Med Internet Res; 2020 Dec; 22(12):e21418. PubMed ID: 33284783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Social media sentiment analysis to monitor the performance of vaccination coverage during the early phase of the national COVID-19 vaccine rollout.
    Rahmanti AR; Chien CH; Nursetyo AA; Husnayain A; Wiratama BS; Fuad A; Yang HC; Li YJ
    Comput Methods Programs Biomed; 2022 Jun; 221():106838. PubMed ID: 35567863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Public perception of COVID-19 vaccines through analysis of Twitter content and users.
    Saleh SN; McDonald SA; Basit MA; Kumar S; Arasaratnam RJ; Perl TM; Lehmann CU; Medford RJ
    Vaccine; 2023 Jul; 41(33):4844-4853. PubMed ID: 37385887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Natural Language Processing to Explore Social Media Opinions on Food Security: Sentiment Analysis and Topic Modeling Study.
    Molenaar A; Lukose D; Brennan L; Jenkins EL; McCaffrey TA
    J Med Internet Res; 2024 Mar; 26():e47826. PubMed ID: 38512326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covid-19 vaccines in Italian public opinion: Identifying key issues using Twitter and Natural Language Processing.
    Stracqualursi L; Agati P
    PLoS One; 2022; 17(11):e0277394. PubMed ID: 36395254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Twitter Discussions and Emotions About the COVID-19 Pandemic: Machine Learning Approach.
    Xue J; Chen J; Hu R; Chen C; Zheng C; Su Y; Zhu T
    J Med Internet Res; 2020 Nov; 22(11):e20550. PubMed ID: 33119535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twitter sentiment analysis from Iran about COVID 19 vaccine.
    Bokaee Nezhad Z; Deihimi MA
    Diabetes Metab Syndr; 2022 Jan; 16(1):102367. PubMed ID: 34933273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Change in Threads on Twitter Regarding Influenza, Vaccines, and Vaccination During the COVID-19 Pandemic: Artificial Intelligence-Based Infodemiology Study.
    Benis A; Chatsubi A; Levner E; Ashkenazi S
    JMIR Infodemiology; 2021; 1(1):e31983. PubMed ID: 34693212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Examining the Utility of Social Media in COVID-19 Vaccination: Unsupervised Learning of 672,133 Twitter Posts.
    Liew TM; Lee CS
    JMIR Public Health Surveill; 2021 Nov; 7(11):e29789. PubMed ID: 34583316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial Intelligence-Enabled Analysis of Public Attitudes on Facebook and Twitter Toward COVID-19 Vaccines in the United Kingdom and the United States: Observational Study.
    Hussain A; Tahir A; Hussain Z; Sheikh Z; Gogate M; Dashtipour K; Ali A; Sheikh A
    J Med Internet Res; 2021 Apr; 23(4):e26627. PubMed ID: 33724919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 66.