BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 35447080)

  • 1. CDYL1-dependent decrease in lysine crotonylation at DNA double-strand break sites functionally uncouples transcriptional silencing and repair.
    Abu-Zhayia ER; Bishara LA; Machour FE; Barisaac AS; Ben-Oz BM; Ayoub N
    Mol Cell; 2022 May; 82(10):1940-1955.e7. PubMed ID: 35447080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CDYL1 fosters double-strand break-induced transcription silencing and promotes homology-directed repair.
    Abu-Zhayia ER; Awwad SW; Ben-Oz BM; Khoury-Haddad H; Ayoub N
    J Mol Cell Biol; 2018 Aug; 10(4):341-357. PubMed ID: 29177481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional Regulation at DSBs: Mechanisms and Consequences.
    Machour FE; Ayoub N
    Trends Genet; 2020 Dec; 36(12):981-997. PubMed ID: 32001024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relationship among DNA double-strand break (DSB), DSB repair, and transcription prevents genome instability and cancer.
    Ui A; Chiba N; Yasui A
    Cancer Sci; 2020 May; 111(5):1443-1451. PubMed ID: 32232911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks.
    Murmann-Konda T; Soni A; Stuschke M; Iliakis G
    Mutat Res Genet Toxicol Environ Mutagen; 2021 Jul; 867():503372. PubMed ID: 34266628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks.
    Aymard F; Bugler B; Schmidt CK; Guillou E; Caron P; Briois S; Iacovoni JS; Daburon V; Miller KM; Jackson SP; Legube G
    Nat Struct Mol Biol; 2014 Apr; 21(4):366-74. PubMed ID: 24658350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA double strand break repair pathway choice: a chromatin based decision?
    Clouaire T; Legube G
    Nucleus; 2015; 6(2):107-13. PubMed ID: 25675367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. E3 Ubiquitin Ligases RNF20 and RNF40 Are Required for Double-Stranded Break (DSB) Repair: Evidence for Monoubiquitination of Histone H2B Lysine 120 as a Novel Axis of DSB Signaling and Repair.
    So CC; Ramachandran S; Martin A
    Mol Cell Biol; 2019 Apr; 39(8):. PubMed ID: 30692271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic analysis of linker histone PTM hotspots reveals phosphorylation sites that modulate homologous recombination and DSB repair.
    Mukherjee K; English N; Meers C; Kim H; Jonke A; Storici F; Torres M
    DNA Repair (Amst); 2020 Feb; 86():102763. PubMed ID: 31821952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The efficiency of homologous recombination and non-homologous end joining systems in repairing double-strand breaks during cell cycle progression.
    Bee L; Fabris S; Cherubini R; Mognato M; Celotti L
    PLoS One; 2013; 8(7):e69061. PubMed ID: 23874869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lysine Crotonylation: An Emerging Player in DNA Damage Response.
    Zhao Y; Hao S; Wu W; Li Y; Hou K; Liu Y; Cui W; Xu X; Wang H
    Biomolecules; 2022 Oct; 12(10):. PubMed ID: 36291637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GCN5 mediates DNA-PKcs crotonylation for DNA double-strand break repair and determining cancer radiosensitivity.
    Han Y; Zhao H; Li G; Jia J; Guo H; Tan J; Sun X; Li S; Ran Q; Bai C; Gu Y; Li Z; Guan H; Gao S; Zhou PK
    Br J Cancer; 2024 Jun; 130(10):1621-1634. PubMed ID: 38575732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Timely double-strand break repair and pathway choice in pericentromeric heterochromatin depend on the histone demethylase dKDM4A.
    Janssen A; Colmenares SU; Lee T; Karpen GH
    Genes Dev; 2019 Jan; 33(1-2):103-115. PubMed ID: 30578303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remodeling and spacing factor 1 (RSF1) deposits centromere proteins at DNA double-strand breaks to promote non-homologous end-joining.
    Helfricht A; Wiegant WW; Thijssen PE; Vertegaal AC; Luijsterburg MS; van Attikum H
    Cell Cycle; 2013 Sep; 12(18):3070-82. PubMed ID: 23974106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bon voyage: A transcriptional journey around DNA breaks.
    Caron P; van der Linden J; van Attikum H
    DNA Repair (Amst); 2019 Oct; 82():102686. PubMed ID: 31476573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alternative end-joining and classical nonhomologous end-joining pathways repair different types of double-strand breaks during class-switch recombination.
    Cortizas EM; Zahn A; Hajjar ME; Patenaude AM; Di Noia JM; Verdun RE
    J Immunol; 2013 Dec; 191(11):5751-63. PubMed ID: 24146042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of repair pathway choice at two-ended DNA double-strand breaks.
    Shibata A
    Mutat Res; 2017 Oct; 803-805():51-55. PubMed ID: 28781144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone H2AX and the small RNA pathway modulate both non-homologous end-joining and homologous recombination in plants.
    Qi Y; Zhang Y; Baller JA; Voytas DF
    Mutat Res; 2016 Jan; 783():9-14. PubMed ID: 26687994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-talk between the H3K36me3 and H4K16ac histone epigenetic marks in DNA double-strand break repair.
    Li L; Wang Y
    J Biol Chem; 2017 Jul; 292(28):11951-11959. PubMed ID: 28546430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles for 53BP1 in the repair of radiation-induced DNA double strand breaks.
    Shibata A; Jeggo PA
    DNA Repair (Amst); 2020 Sep; 93():102915. PubMed ID: 33087281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.