BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

576 related articles for article (PubMed ID: 35447101)

  • 1. Candidate pathways for retina to scleral signaling in refractive eye growth.
    Brown DM; Mazade R; Clarkson-Townsend D; Hogan K; Datta Roy PM; Pardue MT
    Exp Eye Res; 2022 Jun; 219():109071. PubMed ID: 35447101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Choroidal retinoic acid synthesis: a possible mediator between refractive error and compensatory eye growth.
    Mertz JR; Wallman J
    Exp Eye Res; 2000 Apr; 70(4):519-27. PubMed ID: 10866000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melanopsin modulates refractive development and myopia.
    Chakraborty R; Landis EG; Mazade R; Yang V; Strickland R; Hattar S; Stone RA; Iuvone PM; Pardue MT
    Exp Eye Res; 2022 Jan; 214():108866. PubMed ID: 34838844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Altered gene expression in tree shrew retina and retinal pigment epithelium produced by short periods of minus-lens wear.
    He L; Frost MR; Siegwart JT; Norton TT
    Exp Eye Res; 2018 Mar; 168():77-88. PubMed ID: 29329973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression signatures in tree shrew sclera during recovery from minus-lens wear and during plus-lens wear.
    Guo L; Frost MR; Siegwart JT; Norton TT
    Mol Vis; 2019; 25():311-328. PubMed ID: 31341380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encephalopsin (OPN3) is required for normal refractive development and the GO/GROW response to induced myopia.
    Linne C; Mon KY; D'Souza S; Jeong H; Jiang X; Brown DM; Zhang K; Vemaraju S; Tsubota K; Kurihara T; Pardue MT; Lang RA
    Mol Vis; 2023; 29():39-57. PubMed ID: 37287644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scleral gene expression during recovery from myopia compared with expression during myopia development in tree shrew.
    Guo L; Frost MR; Siegwart JT; Norton TT
    Mol Vis; 2014; 20():1643-59. PubMed ID: 25540576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Change in the synthesis rates of ocular retinoic acid and scleral glycosaminoglycan during experimentally altered eye growth in marmosets.
    Troilo D; Nickla DL; Mertz JR; Summers Rada JA
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):1768-77. PubMed ID: 16638980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The choroid as a sclera growth regulator.
    Summers JA
    Exp Eye Res; 2013 Sep; 114():120-7. PubMed ID: 23528534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transforming growth factor-beta in the chicken fundal layers: an immunohistochemical study.
    Mathis U; Schaeffel F
    Exp Eye Res; 2010 Jun; 90(6):780-90. PubMed ID: 20350541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ocular diurnal rhythms and eye growth regulation: where we are 50 years after Lauber.
    Nickla DL
    Exp Eye Res; 2013 Sep; 114():25-34. PubMed ID: 23298452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative effects of posterior eye cup tissues from myopic and hyperopic chick eyes on cultured scleral fibroblasts.
    Christian PG; Harkin DG; Rayner C; Schmid KL
    Exp Eye Res; 2013 Feb; 107():11-20. PubMed ID: 23201112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical correction of induced axial myopia in the tree shrew: implications for emmetropization.
    McBrien NA; Gentle A; Cottriall C
    Optom Vis Sci; 1999 Jun; 76(6):419-27. PubMed ID: 10416937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retinoscleral control of scleral remodelling in refractive development: a role for endogenous FGF-2?
    Gentle A; McBrien NA
    Cytokine; 2002 Jun; 18(6):344-8. PubMed ID: 12160524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ocular expression of avian thymic hormone: changes during the recovery from induced myopia.
    Rada JA; Wiechmann AF
    Mol Vis; 2009; 15():778-92. PubMed ID: 19390653
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of scleral cross-linking using genipin on the process of form-deprivation myopia in the guinea pig: a randomized controlled experimental study.
    Wang M; Corpuz CC
    BMC Ophthalmol; 2015 Jul; 15():89. PubMed ID: 26220299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the sclera in the development and pathological complications of myopia.
    McBrien NA; Gentle A
    Prog Retin Eye Res; 2003 May; 22(3):307-38. PubMed ID: 12852489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered Structure and Function of Murine Sclera in Form-Deprivation Myopia.
    Brown DM; Kowalski MA; Paulus QM; Yu J; Kumar P; Kane MA; Patel JM; Ethier CR; Pardue MT
    Invest Ophthalmol Vis Sci; 2022 Dec; 63(13):13. PubMed ID: 36512347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid, accurate, and non-invasive measurement of zebrafish axial length and other eye dimensions using SD-OCT allows longitudinal analysis of myopia and emmetropization.
    Collery RF; Veth KN; Dubis AM; Carroll J; Link BA
    PLoS One; 2014; 9(10):e110699. PubMed ID: 25334040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Mechanism of axial elongation and chorioretinal atrophy in high myopia].
    Tokoro T
    Nippon Ganka Gakkai Zasshi; 1994 Dec; 98(12):1213-37. PubMed ID: 7832067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.