These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 35447519)

  • 21. Sulfur-Coordinated Transition Metal Atom in Graphene for Electrocatalytic Nitrogen Reduction with an Electronic Descriptor.
    Wen Z; Lv H; Wu D; Zhang W; Wu X; Yang J
    J Phys Chem Lett; 2022 Sep; 13(34):8177-8184. PubMed ID: 36005734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Screening of Transition-Metal Single-Atom Catalysts Anchored on Covalent-Organic Frameworks for Efficient Nitrogen Fixation.
    Wang J; Zhang Z; Li Y; Qu Y; Li Y; Li W; Zhao M
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1024-1033. PubMed ID: 34963279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Computational screening of single transition-metal atoms anchored to g-C
    Kang X; Huang J; Duan X
    Phys Chem Chem Phys; 2022 Jul; 24(28):17155-17162. PubMed ID: 35791910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical screening of efficient single-atom catalysts for nitrogen fixation based on a defective BN monolayer.
    Ma Z; Cui Z; Xiao C; Dai W; Lv Y; Li Q; Sa R
    Nanoscale; 2020 Jan; 12(3):1541-1550. PubMed ID: 31854412
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Theoretical exploration of the nitrogen fixation mechanism of two-dimensional dual-metal TM
    Sun J; Xia P; Lin Y; Zhang Y; Chen A; Shi L; Liu Y; Niu X; He A; Zhang X
    Nanoscale Horiz; 2023 Jan; 8(2):211-223. PubMed ID: 36484435
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spin regulation for efficient electrocatalytic N
    Gao S; Liu X; Wang Z; Lu Y; Sa R; Li Q; Sun C; Chen X; Ma Z
    J Colloid Interface Sci; 2023 Jan; 630(Pt B):215-223. PubMed ID: 36327724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Descriptors and graphical construction for
    Kapse S; Narasimhan S; Thapa R
    Chem Sci; 2022 Aug; 13(34):10003-10010. PubMed ID: 36128233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unravelling the Reaction Mechanisms of N
    Kong Y; He T; Puente Santiago AR; Liu D; Du A; Wang S; Pan H
    ChemSusChem; 2021 Aug; 14(16):3257-3266. PubMed ID: 34121349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser.
    Zou H; Rong W; Wei S; Ji Y; Duan L
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29462-29468. PubMed ID: 33172992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Two dimensional electrocatalyst engineering via heteroatom doping for electrocatalytic nitrogen reduction.
    Yang Y; Wang R; Yang L; Jiao Y; Ling T
    Chem Commun (Camb); 2020 Nov; 56(91):14154-14162. PubMed ID: 33118590
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical Investigation on the Single Transition-Metal Atom-Decorated Defective MoS
    Guo H; Li L; Wang X; Yao G; Yu H; Tian Z; Li B; Chen L
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36506-36514. PubMed ID: 31514492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single-Atom Catalysis Using Chromium Embedded in Divacant Graphene for Conversion of Dinitrogen to Ammonia.
    Riyaz M; Goel N
    Chemphyschem; 2019 Aug; 20(15):1954-1959. PubMed ID: 31157500
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synergistic Effect of Surface-Terminated Oxygen Vacancy and Single-Atom Catalysts on Defective MXenes for Efficient Nitrogen Fixation.
    Tang S; Liu T; Dang Q; Zhou X; Li X; Yang T; Luo Y; Sharman E; Jiang J
    J Phys Chem Lett; 2020 Jul; 11(13):5051-5058. PubMed ID: 32536165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single Transition Metal Atoms Anchored on Defective MoS
    Tursun M; Wu C
    Inorg Chem; 2022 Nov; 61(44):17448-17458. PubMed ID: 36283976
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Single-Atom Low-Valent Alkaline-Earth-Metal Catalysts for Electrochemical Nitrogen Reduction with an Acceptance-Backdonation Mechanism.
    Wen Z; Lv H; Wu X
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52079-52086. PubMed ID: 36356233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Screening of transition metal single-atom catalysts supported by a WS
    Li R; Guo W
    Phys Chem Chem Phys; 2022 Jun; 24(21):13384-13398. PubMed ID: 35608279
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advancing electrochemical nitrogen reduction: Efficacy of two-dimensional SiP layered structures with single-atom transition metal catalysts.
    Li Q; Li W; Liu D; Ma Z; Ye Y; Zhang Y; Chen Q; Cheng Z; Chen Y; Sa R
    J Colloid Interface Sci; 2024 Aug; 668():399-411. PubMed ID: 38685165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tuning the Site-to-Site Interaction of Heteronuclear Diatom Catalysts MoTM/C
    Yang X; An P; Wang R; Jia J
    Molecules; 2023 May; 28(10):. PubMed ID: 37241745
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogen fixation on a single Mo atom embedded stanene monolayer: a computational study.
    Tan Y; Xu Y; Ao Z
    Phys Chem Chem Phys; 2020 Jul; 22(25):13981-13988. PubMed ID: 32555843
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High efficiency carbon nanotubes-based single-atom catalysts for nitrogen reduction.
    Liu W; Guo K; Xie Y; Liu S; Chen L; Xu J
    Sci Rep; 2023 Jun; 13(1):9926. PubMed ID: 37336942
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.