BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 35447590)

  • 1. Structural characteristics of pea protein isolate (PPI) modified by high-pressure homogenization and its relation to the packaging properties of PPI edible film.
    Cheng J; Li Z; Wang J; Zhu Z; Yi J; Chen B; Cui L
    Food Chem; 2022 Sep; 388():132974. PubMed ID: 35447590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of high-intensity ultrasound on the structural, optical, mechanical and physicochemical properties of pea protein isolate-based edible film.
    Cheng J; Cui L
    Ultrason Sonochem; 2021 Dec; 80():105809. PubMed ID: 34715473
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of glycerol on the physicochemical properties of films based on legume protein concentrates: A comparative study.
    Hopkins EJ; Stone AK; Wang J; Korber DR; Nickerson MT
    J Texture Stud; 2019 Dec; 50(6):539-546. PubMed ID: 31228258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical, barrier and morphological properties of pea starch and peanut protein isolate blend films.
    Sun Q; Sun C; Xiong L
    Carbohydr Polym; 2013 Oct; 98(1):630-7. PubMed ID: 23987392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of soybean protein-isolate edible films incorporated with beeswax, Span 20, and glycerol.
    Chao Z; Yue M; Xiaoyan Z; Dan M
    J Food Sci; 2010 Aug; 75(6):C493-7. PubMed ID: 20722902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a Gulfweed-Based Edible Coating Using High-Pressure Homogenization and Its Application to Smoked Salmon.
    Kim SY; Kang JH; Jo JH; Min SC
    J Food Sci; 2018 Dec; 83(12):3027-3034. PubMed ID: 30444955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of anthocyanin-rich red raspberry extract (ARRE) on the properties of edible soy protein isolate (SPI) films.
    Wang S; Marcone M; Barbut S; Lim LT
    J Food Sci; 2012 Apr; 77(4):C497-505. PubMed ID: 22515242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apple peel-based edible film development using a high-pressure homogenization.
    Sablani SS; Dasse F; Bastarrachea L; Dhawan S; Hendrix KM; Min SC
    J Food Sci; 2009 Sep; 74(7):E372-81. PubMed ID: 19895466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-pressure homogenization: A potential technique for transforming insoluble pea protein isolates into soluble aggregates.
    Luo L; Wang Z; Deng Y; Wei Z; Zhang Y; Tang X; Liu G; Zhou P; Zhao Z; Zhang M; Li P
    Food Chem; 2022 Dec; 397():133684. PubMed ID: 35901613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of protein and glycerol concentration on the mechanical, optical, and water vapor barrier properties of canola protein isolate-based edible films.
    Chang C; Nickerson MT
    Food Sci Technol Int; 2015 Jan; 21(1):33-44. PubMed ID: 24072788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporation of α-Tocopherol into Pea Protein Edible Film Using pH-Shifting and Nanoemulsion Treatments: Enhancing Its Antioxidant Activity without Negative Impacts on Mechanical Properties.
    Cheng J; Wang J; Cui L
    Foods; 2023 May; 12(10):. PubMed ID: 37238840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-pressure homogenization lowers water vapor permeability of soybean protein isolate-beeswax films.
    Zhang C; Ma Y; Guo K; Zhao X
    J Agric Food Chem; 2012 Mar; 60(9):2219-23. PubMed ID: 22324505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of curcumin incorporated guar gum/orange oil antimicrobial emulsion films.
    Aydogdu A; Radke CJ; Bezci S; Kirtil E
    Int J Biol Macromol; 2020 Apr; 148():110-120. PubMed ID: 31917216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing pea protein isolate functionality: A comparative study of high-pressure homogenization, ultrasonic treatment, and combined processing techniques.
    Yan J; Zhao S; Xu X; Liu F
    Curr Res Food Sci; 2024; 8():100653. PubMed ID: 38204878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of lactoferrin on physicochemical properties and microstructure of pullulan-based edible films.
    Zhao Z; Xiong X; Zhou H; Xiao Q
    J Sci Food Agric; 2019 Jun; 99(8):4150-4157. PubMed ID: 30767229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation chitosan-based hydrogel film containing silicon for hops β-acids release as potential food packaging material.
    Tian B; Wang J; Liu Q; Liu Y; Chen D
    Int J Biol Macromol; 2021 Nov; 191():288-298. PubMed ID: 34560145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-covalent interaction between pea protein isolate and catechin: effects on protein structure and functional properties.
    Zhang N; Zhang X; Zhang Y; Li Y; Gao Y; Li Q; Yu X
    Food Funct; 2022 Nov; 13(23):12208-12218. PubMed ID: 36331391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Properties and Application of Edible Modified Bacterial Cellulose Film Based Sago Liquid Waste as Food Packaging.
    Yanti NA; Ahmad SW; Ramadhan OAN; Jamili ; Muzuni ; Walhidayah T; Mamangkey J
    Polymers (Basel); 2021 Oct; 13(20):. PubMed ID: 34685329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic effect and mechanism of cellulose nanocrystals and calcium ion on the film-forming properties of pea protein isolate.
    Xu H; Zhang J; Zhou Q; Li W; Liao X; Gao J; Zheng M; Liu Y; Zhou Y; Jiang L; Sui X; Xiao Y
    Carbohydr Polym; 2023 Nov; 319():121181. PubMed ID: 37567717
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of chitosan edible film incorporated with Chrysanthemum morifolium essential oil.
    Tan LF; Elaine E; Pui LP; Nyam KL; Yusof YA
    Acta Sci Pol Technol Aliment; 2021; 20(1):55-66. PubMed ID: 33449520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.