These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 35447694)
1. Efficacy of Ciprofloxacin and Amoxicillin Removal and the Effect on the Biochemical Composition of Ricky R; Chiampo F; Shanthakumar S Bioengineering (Basel); 2022 Mar; 9(4):. PubMed ID: 35447694 [TBL] [Abstract][Full Text] [Related]
2. An investigation on removal of ciprofloxacin and norfloxacin by phycoremediation with an emphasis on acute toxicity and biochemical composition. Ricky R; Shanthakumar S Sci Rep; 2023 Aug; 13(1):13911. PubMed ID: 37626153 [TBL] [Abstract][Full Text] [Related]
3. Adsorptive removal of Ciprofloxacin and Amoxicillin from single and binary aqueous systems using acid-activated carbon from Prosopis juliflora. Chandrasekaran A; Patra C; Narayanasamy S; Subbiah S Environ Res; 2020 Sep; 188():109825. PubMed ID: 32798946 [TBL] [Abstract][Full Text] [Related]
4. Removal of Antibiotics Using an Algae-Algae Consortium ( Ndlela LL; Schroeder P; Genthe B; Cruzeiro C Toxics; 2023 Jul; 11(7):. PubMed ID: 37505554 [TBL] [Abstract][Full Text] [Related]
5. Ozonation of Amoxicillin and Ciprofloxacin in Model Hospital Wastewater to Increase Biotreatability. Aleksić S; Žgajnar Gotvajn A; Premzl K; Kolar M; Turk SŠ Antibiotics (Basel); 2021 Nov; 10(11):. PubMed ID: 34827345 [TBL] [Abstract][Full Text] [Related]
6. Treatment of clean in place (CIP) wastewater using microalgae: Nutrient upcycling and value-added byproducts production. Su Y; Jacobsen C Sci Total Environ; 2021 Sep; 785():147337. PubMed ID: 33932664 [TBL] [Abstract][Full Text] [Related]
7. Pretreatment of saline antibiotic wastewater using marine microalga. Shi X; Yeap TS; Huang S; Chen J; Ng HY Bioresour Technol; 2018 Jun; 258():240-246. PubMed ID: 29529564 [TBL] [Abstract][Full Text] [Related]
8. Phycoremediation of milk processing wastewater and lipid-rich biomass production using Chlorella vulgaris under continuous batch system. Verma R; Suthar S; Chand N; Mutiyar PK Sci Total Environ; 2022 Aug; 833():155110. PubMed ID: 35398125 [TBL] [Abstract][Full Text] [Related]
9. Bioadsorption, bioaccumulation and biodegradation of antibiotics by algae and their association with algal physiological state and antibiotic physicochemical properties. Long S; Hamilton PB; Wang C; Li C; Xue X; Zhao Z; Wu P; Gu E; Uddin MM; Li B; Xu F J Hazard Mater; 2024 Apr; 468():133787. PubMed ID: 38364579 [TBL] [Abstract][Full Text] [Related]
10. Chlorella vulgaris cultivation in sludge extracts from 2,4,6-TCP wastewater treatment for toxicity removal and utilization. Wang L; Chen X; Wang H; Zhang Y; Tang Q; Li J J Environ Manage; 2017 Feb; 187():146-153. PubMed ID: 27889658 [TBL] [Abstract][Full Text] [Related]
11. The excretion and environmental effects of amoxicillin, ciprofloxacin, and doxycycline residues in layer chicken manure. Peng PC; Wang Y; Liu LY; Zou YD; Liao XD; Liang JB; Wu YB Poult Sci; 2016 May; 95(5):1033-41. PubMed ID: 26944981 [TBL] [Abstract][Full Text] [Related]
12. Investigation on the feasibility of Chlorella vulgaris cultivation in a mixture of pulp and aquaculture effluents: Treatment of wastewater and lipid extraction. Daneshvar E; Antikainen L; Koutra E; Kornaros M; Bhatnagar A Bioresour Technol; 2018 May; 255():104-110. PubMed ID: 29414154 [TBL] [Abstract][Full Text] [Related]
13. Toxic effects of polystyrene nanoplastics on microalgae Chlorella vulgaris: Changes in biomass, photosynthetic pigments and morphology. Khoshnamvand M; Hanachi P; Ashtiani S; Walker TR Chemosphere; 2021 Oct; 280():130725. PubMed ID: 33964753 [TBL] [Abstract][Full Text] [Related]
14. Antibiotics removal using a chitosan-based polyelectrolyte in conjunction with ultrafiltration membranes. Palacio DA; Becerra Y; Urbano BF; Rivas BL Chemosphere; 2020 Nov; 258():127416. PubMed ID: 32947674 [TBL] [Abstract][Full Text] [Related]
15. Stress of cupric ion and oxytetracycline in Chlorella vulgaris cultured in swine wastewater. Luo Y; Li X; Lin Y; Wu S; Cheng JJ; Yang C Sci Total Environ; 2023 Oct; 895():165120. PubMed ID: 37379923 [TBL] [Abstract][Full Text] [Related]
16. Occurrence of selected antibiotics in urban rivers in northwest Pakistan and assessment of ecotoxicological and antimicrobial resistance risks. Shams DF; Izaz M; Khan W; Nayab S; Tawab A; Baig SA Chemosphere; 2024 Mar; 352():141357. PubMed ID: 38336033 [TBL] [Abstract][Full Text] [Related]
17. Physiological and morphological responses of green microalgae Chlorella vulgaris to silver nanoparticles. Romero N; Visentini FF; Márquez VE; Santiago LG; Castro GR; Gagneten AM Environ Res; 2020 Oct; 189():109857. PubMed ID: 32777636 [TBL] [Abstract][Full Text] [Related]
18. A pilot-scale study of the integrated phycoremediation-photolytic ozonation based municipal solid waste leachate treatment process. Ricky R; Shanthakumar S; Gothandam KM J Environ Manage; 2022 Dec; 323():116237. PubMed ID: 36115240 [TBL] [Abstract][Full Text] [Related]
19. Growth and biochemical composition of Chlorella vulgaris in different growth media. Chia MA; Lombardi AT; Melão Mda G An Acad Bras Cienc; 2013; 85(4):1427-38. PubMed ID: 24141409 [TBL] [Abstract][Full Text] [Related]
20. Ecological risk assessment of the antibiotic enrofloxacin applied to Pangasius catfish farms in the Mekong Delta, Vietnam. Andrieu M; Rico A; Phu TM; Huong DTT; Phuong NT; Van den Brink PJ Chemosphere; 2015 Jan; 119():407-414. PubMed ID: 25063964 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]